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Commentationes Mathematicáe Universitatia Carolinae 
3f 1 (1962) 

OH THE LOGARITHMIC POTENTIAL 
Josef KRÍL f Praha 

I n t r o d u c t o r j r e m a r k* Suppose we are 
given a simple oriented curve Č of finite length and a 
continuous function F on it. It is well known that the 
corresponding potential of the double distribution can be 
defined by the f omnula 

W > ^ ; F)= Uf£&l-dLi> z e E r C .. 

Investigation of the behaviour of W (x*. F ) (as well as 
c J 

of the corresponding Cauchy^s integrál) as Z approaches C~ 

is of importance for a number of applications* Accordingly, 
solution of the following problems I - III seems to be of 
interest. 

P r o b l é m I. Fix a point j[ € C and suppose 
that 

C A { z ; z * / í j * txpifr, O<p<K}*0 
for every 

Put 1U{z', z=f^f^pi i%, 0<p< R). 
Pind a necessary and sufficient condition to secure the e-

xistence of 
lim WA (z<f F) 
z+f C 
zeU 

for every continuous function F on C • 

P r o b l é m II# Suppose that C is a simple d o 

sed curve and write G for i t s bounded complementary 
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domaliu What (necessary and sufficient) restrictions are-to 
be imposed on C that W , (z j F ) ke unifórmly conti-
nuous on & for every .continuous distribution F on C ? 
OP, which is the samé: Under what conditions hL ÍZj F) 

(so far considered for z € G® only) can be extended to 
a continuous function on & « (^ u C • wheiiever P ' is . 
continuous on C ? 

The problém II having been settled, one can consider 
the operátor 

y * z->f c 
zeO* 

on the Banach space Ď of a l l continuous functions p on 
C equipped with the norm 11 FII * ma* 1 F ( f )I ' ; here 

§eC 
#*=* W (~IT) provided C i s posi t ively (negative- . 

ly) oriented respectively# In connection with "the c lass ica l 
Predhola's method for solution of the Dirichlet problém i t 
is useful to háve an expression (oř, at l e a s t , some estima-
tes) for the quantity 

(1) Ol « tňnf A T - LU 9 

L ranging over the systém of a l l completely continuous l i 
ne ar operát ors acting on B • ( Gi"^ i s so-called Fred-
holm's rádius of T •) Thus we arrive at the following 

P r o b l é m I H . Pind an expression for a> ma-
king clear i t s dependence of the shape of C 

I t i s the purpose of the present páper to show that 
zaethqds of ileal Yariables make i t possible to sol ve the 
problems quote<i above. The problém I will be treated in a 
alightly more generál fashion for path-curves with any num-
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ber of self- intersect ions. We shall introduce certain geo

metrie indicatrices and variaijions (which can also be dee-

cribed purely analytically) and announce aome theorems sol-

vlng I - I I I in terms of them 

D e f i n i t i o n 1. Let <p be a continuous complex-

valued function on <a,, &*>*{*} téE,, a.útú.ir) 

and l e t f be a real-valued function on <£ &? &* > •'. Given 

a point Z € £ 2 - 9> (^0,, <tr>) m f±x a continuous 

real-?alued functioa 1$L on < O/, &r ž K with 

and defin® -fy* 

'(3) UTyUyi)* j Í(Í><L*Z<V 

provided the St ie l t jes integrál on the right-hand side e -

x i a t s . 

R e m a ř k • The definition (3) i s independent of the 
choie® oř # fu l f i l l ing (2)* 

-,x D e f i n i t i o n . 2. Let y háve the aame meen-
ing as in the definition 1. Fix f € E& and defint on 
< 0 , 2 TT> the functioa ^(ac* f ) of the •?ariab-

le cC as follons: For ne 40, 2lT> put 

pl (** i f) s ^ (wher® *t ž 0 i s an integer) 
i f and only i f the path-curt® y meets the half-l ine 

{z}Z™j+f*Xf^i<*>,f>>0}=zPf exactly n -timea. 

Further put (U,*(dí} §) ~ + **» i f $p meets R 

inf ini te ly many times. Tnu® 

iU?(*>i§)'(0á &*(<*>'? f) á . t ° " ) is equal to the num-

ber of points in Jp~ C P- ) Similarly, define for 
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any K > O the function fU^ (<£,*, £ ) of the varia-

ble cfc on ^ 0f 2 TT ^ as follows: For every 

^ e<0, 1TT>, ̂ lícCif) (Oú <"?<*; O á + °°^ 
is equal to the number of points in 

9-*(Pf n{zf lz-fl<>c}). 

R e m a r k . I t can be proved that (for fixed <jp> and 

j ) the functions (W*(<&, j f ) , flL% CcL j f ) (K. > O ) 

are measurable. Therefore we may introduce the following 

N o t a t i o n . 
ITT 

V9($)*J (U?(di*j)<Ldí, 
0 

ir*Cf)- / ' < * ; « * i * u * , 
the integrals on the right-hand side being taken in the sen-

se of Lebesgue. 

£ e f i n i t i o n 3. The meaning of y , | i s the 

samé as in the definition 2. For any p > £? denote by 

A p » f ) C 0 Š * V í f > i + ~ > the number 

of pointe i n / t $ t € < a , #->> / $ p C t ) - j f l « />} . The 

function i) Cpj f ) ( <jp* f are fixed) ia measu

rable on ( 0, 4" ° ° ) and, consequently, the Lebesgue in*-

t eg ra l s 

0 

f ťif>l í )df> - Itl ($ ) O t > 0 ) 
0 

are available. 

Now we are able to announce the following 
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T h e o r e m !• Let ^ be a continuous complex-va

lued function on < a , & > , J e y « a , - ^ > ) . Put 

U*{z.iZ-S+p*fl> + 4i' 0<p<R} .suppose 

that the set Qp~ ( £ ) i s f inite and that there exists a 

f> 0 such that 9 < ^ a , & > ) n / z . j Z » f ±f>exft i fr, 0<f><fy 
~0j 
^whenever |i?*--i5^l< <T •It 

£tm, 11& (z>f) 
z-»f * 
zeti 

exists for every continuous (real-valued) function "f* on 

<a,- to* > f then 

(4; ir9(f)< + co, . 

(5) A>W[I, HT4** (f)< + 00 . 

ft > 0 

The converse of this theorem is also true. More precise

ly , we have the following 

T h e o r e m 2. Let y be a continuous complex-valu

ed function on < <fc, £r>f £ € <? ( X a , *6"> ) and suppo

se that the set <f (\) » (t^ < *•• < t ^ l i s f i n i t e . 

If (4) holds, then there exist the limits 

U^ *""*%kl -> **<% + ) -henevert, < * , 
t-*t + l<Kt)-?ftk)| * * 

'• k 

&» ZlV^VJA « Y ^ - ) Whenever tfc > O,. 
t->tk- l9 r t ) -9 l t f c ) | * 

For the sake of simplicity, let us agree to write 

r V t , - ) - . r % . +) m the case t,- a., T^ft,,.*)- Y^-fr-) 

in the case t^5* ^ . I f , moreover, the condition (5) 

takes place, then, for every continuous function *f on 

<<*>, &>> %($+.*$* " ^ tends to a limit as 
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ft —-> 0 + uniformly with respect to £ on any compact 

R e m a r k . I f cfA (§ ) C Co,., ^ / , in the above 

theorem, £ums ocrv C?4->£ £ $ -f ) i s constant on every 

component of {* - 1 £ I * 4j - U «[T v t^ -^T <\-*")}. The same 

i s true provided <f (cu) » 9 (-&-) 

R e m a r k . If 07 i s a rectifiable path-curve on 

< a,, # > f t h e n t h e s e t of a l l J € cp K **>, ^ > ) with 

*ttft * <*>K ̂ V" * °° i« of (Hausdorff) linear mea-
* > 0 

sure zero. On the other hand, example can be given of a sim

ple rectifiable path-curve cp on <a> , & > such that 

the set {" f j f € y «cu, #->), V9Yj ) s -h^oj i a of positive 

linear measure. This, of course, does not mean, that there 

exists a continuous function F on C as J* (< a*, <r > ) 

such that non-tangential limits of \A£ ( X > F ) do not 

exist on a set of positive linear measure. (In fact , the con

trary is known to be true.) 

By theorems 1 , 2 the problem I i s solved. Let us now 

proceed to the problem II. 

N o t a t i o n . From now on we shall assume that cp 

i s a complex-valued function on < a,, -&> such that 

$p(a,) a Cf (%r) and <f (t^ ) =• <$ (tx ) whenever 

0< I t , - t j < * - * . , t t , t A 6 < a , , * > • 
The symbol C will be used to denote the set <f « G>, frs) 

as well as the oriented curve determined by y # For any con

tinuous real-valued function F on C and any Z 6 £„ - C 
x 
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n»e put W (Z; F ) = lí£, ("Z-; f ) , where 

This Í89 elearly* in accordance with the notation ušed in 

the above remarks* Purther we shall mrite G for the boun-

ded complementary domain of C and B for the Banach 

space of a l l continuous real-valued functions F on C 

with the usual norm II Fíl » w ^ I F f£ ) | . 

T h e o r e m 3* Suppose that W (z * F) i s u-

niformly continuous ©n 0* #ienever F is continuous on 

C • Then 

' mu(v V Y f X + oo 
( 6 } f e C • 

and (since trf (() á í r^Cf)) &M*> v-*($)< + oo f o r 

every ^, > O . 

Converselyf the following theorem holds* 

T h e o r e m 4 . Suppose that / 

for a certain fl > 0 . Then (6) holds and, for every con

tinuous function F on C f Wr (z.5 F ) (z € G* ) 
v 

can be extended to a continuous function on fi U C • The 
0 

operátor T on B defined by 
T F C £ ) » < r F ( f ) - | ^ »£fc, F), f e C 

( (T« I T according to whether L is positively or 

negatively oriented) is bounded and its norm is equal to 

JTc 
As to the problém III, the following theorem can be pro

ved* 



T h e o r e a 5 * Suppose that (6) holda and l e t c** 

háve the samé meanlng as in (1) . Then 

Proofs of the above theorem® together with further r e -

su l t s In th i s direction will appear later# 
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