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Comment at iones Mathematicae Univers i tat is Carolinae 

3, 1 (1962) 
REMARK OS TOPOLOGICAL EMBEDDING OF COMMUTATIVE MAPPINGS 

Zdengk HEDRLfW , Praha 

Throughout t h i s remark X wi l l denote a topological 
space and F the system of a l l continuous mappings from X 

into X ; F w i l l be considered as a subset of the product 

X^ and wi l l be endowed with the wpointwise topology*, i . e . 

•fine re la t iv i s ed product topology. Accordingly, the pointwi-

se convergence of nets w i l l be considered ( f ^ - > f means 

that f* ( x ) - > f ( x ) for every x < X ) . 

I f GcF , TcX , then G-(T) denotes the set of a l l 

g(y) , g e G , y c T . I f x e X , w e s h a l l write G(x) i n -

stead of G({x}) • The set G(x) wi l l be ca l led the orbit 

of x under G . 

An orbit cover of T under G i s defined to be a 

c lass 0* of subsets of T such that 

Q.) T » u a , 
(2) every set from CL is an orbit of some y e T 

under G .-The operation in all semigroups will be the com

position of mappings .-The cardinal of a system & is deno

ted by card CL . 

We shall prove the following theorems: 

Theorem 1. Let G, G c F + be a commutative semigroup, 

and X be an orbit of ef e £ X , under G • Then G with 

the point wise topology is homeomorphic to X . 

Theorem 2. Let G, G c F , be a commutative semigroup 

and CL be an orbit cover of X under G • Then G with the 

pointwise topology is homeomorphic to a subset of xcar<* ^ 
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(with the product topology)• provided, «S contains identity. 

Proof of theorem 1, For g £ G , put <-f (g) » g(e); 

clearly, cp ^I?8 Q onto X . 

If <f (gx) » <f (gg) for some «lf ^ « G , then 

g1(e) =» g^e) • For every x € X we can find g e Q such 

that g(e) * z » Hence 

gx(x) » g1[g(e)] * gj^te)] * g^(e)] » g2 fc(e)J =* g^x) , 

and g± -» gg . Therefore cy is one-to-one. 

We are going to prove that <̂  is a homeomorphism. 

Let .[f^ ,*,€!)} be a net, f, f^ e G for *, € D . 

If f̂ - (e) -* f (e) , then f^ (x)-»f (x) for every x € X . 

Clearly, for every x € X we can find g € G such that 

g(e) » x . We have 

** <*> = ** [«(e)J « g k (e)J 

and f^ (x)-*f(x) , as g is assumed continuous. Therefore 

(f is open. If f^ (x) -*> f (x) for every x e X , ff j^« G, 

then oj (f^ )->^(f) , and the theorem is proved. 

Proof of theorem 2. Let Y € d , G(y) = Y . Evidently 

G [G(y)] » Y . We shall denote by G|Y the class of all 

mappings from G restricted to Y . G|Y is a commutative 

semigroup of continuous mappings from Y into Y , 

G|Y(y) =* Y • According to the preceding theorem there exists 

a homeomorphism Cf y from GJY onto Y . Let us define the 

mapping Cf from G into x coordinate wise: 

9 Y(g) - ifT(glY) for every Y £ CL . 

If g^, g? £ G, g-, # g2, then there exists Y e CL such that 

g l ' Y ^ g?'Y> hence <f T(gj) 4 < ? Y ^ 2 ^ * ^ 9*Y is o*16"-*0*-0116-

- 16 -



Therefore §P is a one-to-one mapping from G onto eg (G) . 

It i s sufficient to prove that <P is both continuous and 

open. 

Let ^---y f, f, f ^ c G . Then <p ^(f^ )->9>j(f) for 

every I g f l , Let <p (f^) -> ^ ( f ) , f, -^ e G . To every 

x 6 X there exists 1 e CL f G(y) a j , such that x £ Y • We 

have 9 r ( ^ ) - . > 9>y(f) , and f^ (y)-> f(y) . We can write 

x * g(y), g € 0 • Then f^ (x) * f^ fe(y)J » g [f^ (y)J , end 

jt̂  (x) —• f (x) , as g is continuous* The proof is concluded* 

- 17 -


		webmaster@dml.cz
	2012-04-27T15:00:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




