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ON NONLINEAR NUMERICAL ITERATION PROCESSES
) Stenislav MALOR , Prehas

X

Let Y be a Banach space and F its closed subset.
Let K be a Lipschitz operator mapping F into ¥ , i.e..
there exists 2 positive constent A such that
(1) IKe~Kvfig8lu-vI|
holds for any w, v € F..
Let us consider the iteration process

Y, € F,

(2} A
’\5»4-12,(1‘3%1 n= 0,",2,”. o

This process is convergent if the well known conditions
given in the Banach theorem (see e.g.[2]) are satisfied, i.e.
() . B<A,

(3b) yoe F=> 4 =Ky, eF:,
(3el "5(91’ ).")CF’

where S is a closed sphere whose centre is Y, end radius
/L=;,—/_§B-ll Y, - Yo ll .

We shall suppose that the sequence (2) converges to the li-

nit '\J* .

In practice, if the digital computation technigne be u-
sed, there often will be necessary to tramsfer the problem
of realising the sequence {y,,} » defined by (2), into =2
space different from the ofiginal one, so that the elements

Yn might be numerically interpreted [1]. To this effect it



1s necessary to replace the original process (2) by another
subsidiary process wh:l.oh is easy to be realised as to using
the numerical techniqﬁé;' ﬁoreover, we must naturally desire
the original process (2} to be approximated sufficiently ac-
‘curately by the subsidiary process.

In agreement with Kentorovi& [1], let us trensfer the
problem into space Y isomorphe with Y , the isomorphism
being realised by the lineer bounded operation $ ; it is
natural to assume that the elements 4 € F  can be numeri-
cally interpreted. The construction of the subsidiary iters=-
tion process will be done by a suitable operator K appro-
ximating the operator K . Let us assign the analogical pro-

cess _
) Yo PYo
“ Guer = Kign, m= 0,1,2,.
to the process (2). '
In this papeﬁ we study the approximative solution of the e~
quation 4y = Ky  when the 1ter§tioﬁ process (2) is replaced
by the process (4).

First, we shall deal with the question what sufficient
" conditions sre to be required from the operator K to get
the limit "y* of the piécesa (4) sufficiently near to the
limit y* of the sequence (2) in terms of the definition
() Q(y*’ "‘2*) <¢t, ' where  _
P(u,a)= |I9’_a.-1'£l|? ,weY,aeY
and ¢ ‘1s a given'poéitivé number.

Next, we consider the questidn of the influence of the

rounding-off errors. -15 =



II

We assume that the approximating operator K is Lipsch-
itz bounded, i.e, for & ,? being two arbitrary elements be-
longing to ?, '

(6) IKa -K# I = Ala-wi
holds.

- %
The process (4) will converge to a certain limit % ,

if analogical conditions, the same as for the process (2),

i.e.
(72) g<1, _ _
(7v) ‘-y-a eF => ’g1 = K'gc € F,

. - _ - _ ﬁ - =
(7¢) 5.' (i,,'(-,)c F; ’L,"q iy, ‘yo‘y
hold.

What other conditions are to be satisfied by the appro—~
— - %
ximation K , s0 that the limits y* and Y may be suffi-
ciently near in terms of definition (5)7 The answer to this

question is given by the following theorem:
Theorem 1: Let the following assumptions be fulfilled:

1) The conditions (1), (3a,b,e), (7a,b,c) and (6) are
satisfied.

2) Approximating operator K 1s such that for any ele-
zent L €F  the inequality )
- bs sSallall
(8) Mo Ku Ky « g3 y ¥

x) "he condition of L.V.Kantorovi¥, [1], p.107

- 16 =



holds.

3) 5(9ye, )€ S (g4 2y)
holds, where 4j,, A  are defined by the process (2) and by
the Tormula (3e),

4) Nels 1-
Then .
. *_= % C
9) Lim, () y,‘_u\; ] 7S

holds, wh - Ny; I, .
0. ere c oﬂ“y y

Procf. As both sequences {1y, } ,{yn} are convergent
according to our assumptions end the operator @ is continu=
ous, the limit in (9) exists; it remains only to prove the
inequality.

1) First, we shall prove that for any positive integer
n_ the inequality

x C

. - ) wey
€10) "9’15@4'4 Ymsa “Y £ 1-3 R
holds, where
Cp= maz. “'y", “y .

Evidently, for any 4« € S

lou -y, Islolllu-ylcllu-y Is 4
holde’ 1.6. 9“— € g c §1 .
Then it follows from our assumptions that

Gl =g Ky, ~-Kgy.l. = xliy,l
gy ~¥.llg = lg Kyo-Koyol Yol

B Y Kg <
Uy Yoss = Yl = Iy Ky, - R g £

él\c;Ky,‘--st,\,Il7 + |K@y,— Kin 117 .

-17 =



a8 Yy, €S c F , (8) can be applied on the last by
one term further, P Yn € §, 1}',, € §1 , conse=
quently & Y, eand 1;',‘_ belong to F and (6) can be applied
on the last term; consequently _ _ »
19 Ynsn ~Fnra Iy & %y I, +BlSYn~-Ynly %
— 1 < oo
goly, I, + B[ gy +r3n9y,.-4 -1 71
< ,_i‘-’-—c-q—“— °
P N P

2) It is evident that
loy*-4nlls & loy™ = 9Yn ll— + |9 Yn~ Yn N7 <

Y
' * f‘__‘.:_—_‘"-—-
2y -ynuy«“ -7

nolas, As y*~4. >0 ana ¢, £ ¢ , the inequality
(9) follows immediately.

Note. If the operstor K and its approximation K are
linear bounded operators mapping complete spaces Y Tesp. Yy
into themselves, then we can put F =Y, F=Y,8=IKl,B=IKI
and the assumptions (3b),(3e¢),(7b),(7c) are to be dropped.

IIT
In practice however, as the actual computation is reali-
sed by digital numbers, rounding-off errors in the process
(4) arise, Consequently, the computation procedure is not de=

fined by the iteration formula (4) but in general by the fol-

lowing one:
Yo = FY+ 7]
(1) 4 Yo
§.m = K'gn , n = 0,4,2,...



where ﬁ € S-’ and the' operator R is defined on the same sub-

space F as K and approximates K 4n terms of definition
2} IKa-Ka s £5, @ eV,
where f is & nonnegative number (the upper bound of error
caused by accumulation of rounding-off errors when computing
the value K 4 ).

It is the process (1l) only which allways can be realis-
ed.

Theorem 2. Let the following conditions be fulfilled: X

1) The inequality (12) holds for any 4 €Y ,

2} (72),(7v),(7¢) hold,

3 4y, eF

4) U (g, £ +9q)c F,
where U (§4.4 + %)  is the closed sphere, 1; its centre,
A + 7% its redius, .

7,.&%;&_, H= L LI -G+ 1T+

Then 1) 4; € L forall i=4,2,..-

2)} The estimation

(13) 15, - 4o N1 A" lh; I+ “

ml

holds.
Proof: 1) We shell prove that the sphere g,, defined

by the formula (7e¢) is contained in the sphere
> (g, 1),

x) In the follovring we omit to designate spaces when writing

norms.

-19-



tee. that h e S, implies | o -G, IS5 £ .
Really,for eny 4, € F _
o - q,ll‘ﬂh -~y l+ Iy - 91'

-4, 1% 5 ﬁuu, TR —-/T(uy, g Il +
+ uy1 “':l. “)
15.-Go IS UKG, - KG. 0+ IKG, -KG. 0 By, -G 0+ § -

From these inequalities we get aimply

th-ghs BULLEE o Aoy gt = 7.

2) Evidently < -neighborhood of 5 is contained in
Y -neighborhood of S and consequently in L . We shall
prove by induction that if ; € u , then glsc 4;,, € u
For 1=1 it is proved; for © 21 we have |

19; -Gl = 1KGiy = KGeea Il 2

IR §ooy - KTl + KT = R D2 BUG; =G S S

S A{BC - E G- I+ §)+ceev fhef =

LIRS NN Py SRy AT TR

i.e. the estimation (13) holds. From it follows that

hg; -J. 0 & __ﬂ_iL’.LL‘:._ < .

ke g‘_ € S., s the first part of the assertion is al-
288 proved.

Note. The influence of truncation and of rounding err-
ors was studied by M, Urabe, Theorem 2. is slightly genera=—

lized result of his paper [3], whoee formula (2.5) p. 481 is
- 20 =



a special case of our.formula (13) when 4, = 4, .

v
Conclusion., Summing up the results of items 2 and 3, we
get the following theorem:

Theorem 3. Let the conditions of the lst and 2nd theo-
rem be satisfied. Then the following assertions hold:

1) All elements of the sequ~ence (11) belong to F .

2) Por the distance of the M =-th approximation 'g,,
from the element 99* the estimation

®x Cp+f

1-8

14) Ngy*-gu lg < ly*-y, 1|y+f3"||ﬁn7 +

holds, where ¢, is defined in the theorem 1 .
Proof: Evidently

gy =Gn I S 19Y* =~ @Y I+ [9Yn= o [+ | n =T I -

The first term of the right is at most equal to the error
of the M =th approximation in the process (2). For the se-
cond term we use the estimation (10) and for the third the
estimation (13). ' -

Note. The influence of errors lly* ~ Yy, I ana 7l
Ad:l'.m‘iniahes with M —>00 +to zero. But as § is a fixed
positive number, it does not follow from (14), that the pro-
cess (11) should converge in current sense. We can assert
only, that a number V being given,

@C“l"f
e m— =/5(Lfb c
v > = ;1 € oy n ?

1- 8
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such an integer m, exists that i,,, belongs to the sphere

§v (914’; v) for all m 2 n, . In practice, as a rule, ¥
will be an Euclidean M ~dimensional space R™ . In every fi-
nite p.art of R™ there is a finite number of vectors whose

components are digital numbers with given number of figures;

let us assume that the sphere SV contains just N elenents.

Then evidently, if the sequence {'gﬂ} does not converge,
it will be periodic beginning from & certain M, = M,

with the period NN at most. In other words, the sequence

{4,} will reach the state of numerical convergence in the

sense of M. Urabe [3]. An arbitrary element «Z,.,1,,;

4 =0 1 gt can be accepted as an approximation of

g* the error of which does not exceed the number V

" The state of numerical convergence need not take place
vwvhen especially from the conditions of theorem 2 it is the
“2nd condition only which is not fulfilled. However, in the

-case mentioned in the Note of item II the 2nd condition is

to be dropped.
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