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Commentationes Mnthematicae Universi tat is Carolinae 

3 , 4 (1962) 

REMABK ON THE TENSOR ALGEBRAS 
Miloš DOSTJÍL, Praha 

In this notě we define a local convex topology on the ten
sor algebra constructed on the sequence of PF -spaces (see 
[3]), which makes from this topological linear space • a lo-
cally m-convex algebra. All spaces are automatically suppo-
sed to be convex and Hausdorff» 

Let A be an algebra over the complex numbers C • The 
pair (A , 18 ) , where A is algebra and % topology on A f 

is called the topologicsl algebra (further t. algebra), if the 
following conditiona are satisfied: 

1° (A *t) is a t. 1. space, 
2° The multiplication in A is continuous in every com-

ponent separately. 
Uhder the proper t. algebra we understand every t. algebra 

in which the multiplication is continuous mapping from Ax A 

into A • Locally m -convex algebra (briefly 1. m-c. algeb- a 
ra) is the t. algebra in which a fundamental systém of idempo-
tent neighborhoods of zero (see [4]) exista. 

We^shall use the follpwing assertlon: Every proper t# al
gebra can be completed and ita completion becomes sgain the pro
per t. algebra, (The proof of this theorem, which must be cer-
tainly knowi, is of the technical character and will be omitted.) 
It is an easy consequence of the laet proposition. that the com
pletion of the 1. m#-c. algebra is again 1* m.-c. algebra, 

1) further only t» 1» space 
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íln this connection remember the. following fac t , due to *ael • 

brock (seef5])í If the completion of a t# algebra lar mgmín t» 

algebra., then the product M • N « {% - x *y € A Í * *S H , V € N í 

of any bounded subsets M ,' N of A is also boundtd *) 

Let us #ive a sequence £<» £i> ••• of t» 1# apaces, 
OP 

put M % 2 L £*t f uhere 21 means the topolovícal direct 
« _ 2 ^ 

sum mna furťner X I A * 21 ®* M t wher© <S/* M« M«.-®ř1 
(ft-t1raes) «*re the projective tensor prociucts (see Í3j)» I t is 

°° 
clevr that X E-»v ía also" t . ! • space* Call this- space the 
J-T^V:? .'t: ve- tensor product of the. sequence ťE.^)^^^ • Froa 
an al^ebraic point of vlew i t i s sn algebra with the obvioualy 

, íefined roultiplication (see [2j)» 

The ořem* Let £** (n > 4 ) be the sequimee of PF -spaces* 

Denote by ffij the set of a l l ordared sequence^ of *ft natural 

numbers. Xhen the projective tenst>r product of (£**)*** 4 i® 

a t)F -space and at the samé tirae a 1* nw-c# algebra, the com

pletion of which is 

Froof: I t follows from [3] , p . 46, propositíon Su , that 

we hwe S^M -2L ® £.{ j therefore X E ^ f l J , £^ 

Now we shall show that X EU is l f uu-e. algebra* Let 

( ^ \ clu be a fundamental systém of barrelled neighborhooda 

of zero In. E .̂ « From the usual propositionff *bout the t . !• 

spaces ana their projective tensor product* (sree DX DJ) f o l l -

owsťhe family of a l l the seta of the for* 

&* UTKJ r Cťfi V* ' ̂  <whax* S « ' i for «11 fi «• úÉÍf«*» 
and I e CftJ ) 
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forw the fundament*! systém of neighborhooda of zero in X E~ 

Tafee U a® one of these neighborhoods Cwe omit the indexe® i , )• 
4 ' 

If * « W , then * * ]£ ** . and for every 

/ . <,!,-« i. x^^^rcgvt) i#e. xAr2ni. , 
where *fy* * r (Jf. ^ > and I ý, -6 € í <hÉ 1 foT a l l 

A m 4, 2 f •#» , m f so that 

^V* *£*%* A | ,*^ ,
#í4 ( M ^ 4 b e i n g f i n i t e s e t 8 » w 

shal! Offlit thtm for shortness) , t 4 « ^ • ^ '*'* and 

for a l l poaaibl* *̂, ,6 hold* 

(i) %.\X}*1*4 • 

We háve altogether 

(2) *-£ .??<!# 
If y is another arbitrary element of ti we can put dovm 

here all capltals háve the ®ame significance and properties aer 

the correapondlng omall letters in (2)f especially 

T^ € \^» VhU mů for all j f S we haw 

(4) 
J,5 Z iA/^l^ A . t t 

for inatanoa $, *, J , S to be flxed and let \jf* "»{tff—lí^J 
l j í S* í^ f •••,AKj ) t Put I# ,* ;^s * f**i—> <*.y**Af**">-**&! 
and TTJJ,i« t i i f A i s «<pal to sem ^ e J / f 5 and 

1J*' « ^ t whttt A ©cpala to eome A^ 6 tJS • Then 

- 5 -



c®.t Í> ® (® TÍ) -4 € g J S T * L e K-; © - ® VÍ^ ® li, ®-®Kj • 

Further is £ *•** AJf ® l£'L <*• P(V^ O - ® ^ ) because from 

(1), (4) it follows- that I l ^ ' V & l ^ A and so z y € Ž Í , 

i.e« U i» idempotent and X E ^ $0 as its completion is 

lo nu-c# algebra (aee the text before the theorem) and both are 

DF -spaces- (see [3] )• 

Remark. The class of DF -spaces contains all normed 

spaces and so we obtain the projective tensor product of the se-

quence of normed spaces* But there is another way, how to con -

struct a "natural" tensor product of the family of normed spa

ces. Let (E^ ) L € \ be such a family. Vře caa embed isomorfic-
ally every BL in the B -space CC\) of cóntinuous func-
tions on the unit sphere Xt of £ , which is: compact in the 
topology G?(E\ £ ) o Put X~TCXL and denote by BL (1^ 
respectively) the mentioneú embedding of E t ia CCXfc) (reepec-
ti vely of C(XJ in C(X) }. In the Banach algebra C (X) 
we shall consider the algebra A generated by the set 
U.fy Í0t CEt )) . It is natural to.call A the tensor pro
duct of the family ( £ t ) t e | • Notice in this connectioix one 
fact which is not wi tnout interest. Let I be the set of all 
natural numbers and 3 the set of all finite sequences- of 
theii* Let X^ (ie I) be compact spaces• If J e l denote 

/̂ " ̂ ' 2 * * ' • For a r b i t r a ry J »-K for which is 
J C K C I ,we háve canonical isomorphical embedding 
Cj —>' CK f so that Cj is- closed in C^ • Theix 
C «^U^ Cj is, (algebraic) subspace in Čj . 

Proposition; Denote by %„ the topology on C of induc-
ti ve limit of the family C, í J € V ) (with respect to 

— o «•» 



the mappings* C, —* C ) and Xr the topology on C as on 

the sobspace of C, . Then ^ S ^ pOÍ 

Proof: For J € & l e t Tfcj be the topology of the spa

ce C, ( I t means the topology of uniform convergence on TC X i 

Evidently %„ \c » %j 2 \ but by the definition of %« , 

th is i s the finest local convex topology % for which every 

%\r i s coarser than the originál topology %] and so we 

narve %QA o %<r (from this inclusion follows that we há

ve even ^ Ic - os : in fact **, » %^ lc c ng^ lc Ctt,) . 

Put C^« C C.TT X< ) and define the topology 'ŽL on 

* Jtí *" °* inductive limit of spaces C^ • ' I t i s not 
00 

U 

hard to show that %a » ¥ * • But f C, ̂ w ) is 

complete LF -space (aee [l] , chap. II.) - sv (C , "&& ̂  i» 

complete. Suppose that ^ * %# \ t*1*1* (C , *b9 ) must 

be closed in C, , but the closure of (t , 16^) in čj i« 
the whole space Cj (aee flj ) and so we obtain C » £/ what 
is not possible. 

We shall return to these questions later* 
I wish to express my gratitude to Professor M» Katětov for in-
trodtacing in these topič©;* 

R e fer e n c e s 

2) If ÍV^t) is a topological space, Z subset in Y , 
then % L means the relativa topology of Z . 
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