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Commentetiones Mathemsticae Universitatis Carolinae

4, 4 (1963)

A NOTE ON K-POSITIVE OPERATORS
Ivo Marek, Praha

In this paper we give some generatiohs of the results of
the third peragraph of the paper [4].

Let Y be & real Banach space, X the corresponding
complex extension defined in evident way. Let " ¥°, X° be the
adjoint spaces of Y, X and let [Y] , [X] be the spaces
of linear bounded operestors mapping Y, X into itself. The
reader can find the necessary definitions in the paper [4].
let Kc Y denote a productive cone and let Kc ¥~ denote
the adjoint cone ([2]). By the symbol (T} ([5]p. 292)
we denote the set of complex~valued fun‘ctiona which have the
follawing properties: (i) The definition domain 4 (f) is
an open set in the complex plene such that 4 (£)> 6 (1) ,
where 6 (T) is the spectrum of the operator T . (ii) The
function f is differentisble in 4 (£} end £(A) is
bounded as |A[— o0 .

The operator T € [X] is celled Radon-Nicolski opera-
tor ‘(m-operator), it T = U+ 7V, where Ve [X] ad
Ue [X] is a compect operstor such thst the inequality
r(T) > r(V) holds for the spectral radii r(T), =x(V) .

Some assertions of the third paragraph of the psper [4]
are proved by using the assumption that K 4s so called vo-
Iume type cone and thst the operator T 1s strongly K-posi-
tive. We cean show that these assertions hold also for a
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class of more genersal operators.

Ir &-xsK , where x, y €Y , we write x <4 y or
¥y x.

Definition ([1] p. 261 ) The K-positive ope-
rator (TK € K) 1is called  44,-bounded, if there is a vec-
tor «,€ X, 4, ¥ 0 (0 denotes the zero vector in Y,
X ) end if there exist a netural p and positive o, 3
such that the relations
(1) Xy 53 TP x 3B

hold for eny x €X , x ¥ O .

Correction [4]. In the proofs of all the theo-
rems of the third psragraph in [4] it is assumed (sesigea: o-
ther assumptions) that T 1s a closed operator for which
there exists a function f € Cf (T) such thet f£(T) = U + 7V
is a RN-operator and such th‘at‘

(2) I£CA > (V) i  |Al=r(T) .

The assumption (2) is not referred in [4J and so the corres-
ponding proofs are not correct. We were not succeeded to pro-
ve the mentioned theorems without the essumption (2).
Lemmal. If T €[Y] is an  «, -bounded operator,
then there exists st most one eigenvector X, of thg opera-
tor T which belongs to the cone X .
Proof . Let us assume that vy, Vv, € K are two

independent eigenvectors of T :

(3) Ty = MV, TV, = YV,
and let
(4) ® >» 20.

From [1] p. 262, lemma 2.2 , it is known thet T is also
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Vl-bounAed and so there exist pap(«),xracﬁ),%hat
xv; 3TPy; 3 By
From (3) we deduce TP v, = »P 77, and we obtain the rela-
tions
() w3 2Ty 3 ATy,
which hold for every natural n £ 1 . It follows from (5) that

P
g T (Z Yy

But (’)/(w )®  converges to zero by (4) if n—> a0 ., So
%3+ 0 in contrary to ¥, # O . Let us assume 2 = (¢ ,
But in this cese the vectors of the form vy, -t ?/'2 s, t
real, heve the following property ([1] p. 242 ): There is a
to for which

V)=t v,eK If t =t v‘l-tv'gix if
t > to .
We have already used the fact that the operator T 1is U=
bounded, so that '

™ () -t vy bR (y-ty)Yy
o o P

This relation shows that v - (%, + /(u )V, ex an
this is & contrediction to the definition of to o The lemma
1 1is then proved.

Definition. An 4 -bounded operator T is
called strongly 44, —=bounded, if there exists numbers p =
= p(x) (natural), 9 = 9"(x), (resl) such thst the relsticn
(6) v ™ x 3 4
holds for every vector xe Y .

Lemma 2, et T be an 4, -bounded operator snd
let x, be a K-positive eigenvector (xoe K) of the operator
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T corresponding to the eigenvalue ¢, . Then the power i
is also X, =bounded for all naturel k .

Proof is evident.

Theorem 1, Assumptions: -
1. The operstor T is strongly 4, -bounded.
2. There is a function f e £ (T) such that £(T7) = U + Vv
is RN-operstor and such that the inequelity (2) holds.
Then there exists one and only one eigenvector x, € K of
the operator T . The eigenvalue (¢, corresponding to this
eigenvector X, is poaitive, simple and dominant, i.e. the
inequalities

¢! Al < e

hold for Ae 6@, A%+ %, -
To the eigenvalue e corresponds an eigenvector x; € K°
of the adjoint operstor T° end this vector is a strongly po-
sitive form, i.e.

Xg (X) > 0 if x € XK, x#+ 0.

Proof . From the paper [4], theorem 3.2 , it foll-
ows the existence of an eigenvalue (%o > 0 of the opera-
tors T, T° such that

Al S 5 [AlE o

for A e 6 (1), A e 6 (T°) and the existence of ei-
genvectors X, € K, x) € K° of the operators T, T’ cor-
responding to the value (., ° . .
From the lemma 2.2 of [1] p.262 and from the X ~boun=
dedness of T it follows that
o« xg (xg) £ x; (1P 0= el xi(x) = B8] (x)

and from these relations we deduce the following result
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xg (x,) = O¢=> xg(x) = 0 for all xeX.

Thus xj(x ) must be positive end therefore xj(x) > 0 if
xe€K, x#0.

We shall prove that the eigenvalue ,w, is simple. Let
x, € K, ve Y be two independent eigenvectors of the ope-
rator T corresponding to the eigenvalue (&, . Then we ha=-
ve by the assumption 1 thsat x - 9"’1/‘ € K, so that. Xo ~
- 'f'v' =z, T‘éacﬁxn)g“(uf\(ﬁéz% eigenvector of the opera=
tor T corresponding to the value (%, . Thus by lemma '1
z = 7 x, , where 7 is & real constant and therefore v~=
=7 Xy o )

If there is a vector ye& Y such that

(T -, D" y40, (T- D y=0

for some r > 1 , then the vector z = (T = 4 )Tt y ia‘
an eigenvector of the operator T corresponding to the eigen-
value (W%, . Thus z = 7 X, , wmere x, = /wa'l T X, ,
%X,€ K, X, % 0. The sbove considerstions give x‘;(xo) >0

’

[+]

0< I X@)=1x) ()1 = [ L(T e I %3Gy | = 0

= =1 . g
where x = ;" T’x] , x; € K', x4 0. Thus

anci this contradiction proves the simplicity of the eigenva-
lue s in regard to T .

Similarly we shall ‘prove the simplicity of the eigenvae-
lue (o with regard to T . We prove that every eigenvector
v’ of the operator T’ corresponding to %, has the form
7 xo » wWhere xg = (w‘,—l’r’xé , x;€ K, x5 4 0 for.
some suitable real 7 . Let us assume that x; and v~ are
linearly independent.

On the unit sphere S; ={x[xe X, llxll=1 we have
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(8) z; (x) =x)(x) =t v(x) 20 for all real t=t, , whe-
re It l< o0 .
From the inequalities
’ p , d
xzi(x)E gy 2.(x) 5 G z(x)
it follows that either z/(x) =0 for all x€ K, or
zg(x) >0 for x €K, lxll=1 and thus z,(x) >0 for
x €K, x40 . But the first possibility is in contradiction
to the essumption of lineer independence of xo', v’. Thus
z{(x) > 0 for x €K, xs 0. Let us sssume that t, is

such that z;e K for t=t, and

(9) 2, EX° for t>t, .
Let | x; ] : I vl be the norms of the forms xj, V.
Then we have by (8)
(10) z;(x) - (t"f:‘% zg(x,) -;{—‘:{7‘77)' >0 for x€K,
x%0,
where z_ = z{o . The relation (10) implies

’ ’, ;(‘xo) 4
xo(x)-tov(x)-(ﬁ‘f’f 5”-;;77,— vi(x) =0,

or x; -{[to + op/(“—f ) (z;(‘xo)/”v'”}i’,é K which is impos~-

sible for (9). The linear independence of x; , v_ is falge.
Thus v’ = 1'x] for some real 7’ .

let y° be a form lying in Y’ such that ¢ = (T~ =
- (uaI')P"l y'#0, (r’- (u.o(I:)r y'=0 for some pr > 1
(I” = denotes the identity-operator mepping Y’ onto itself).
It is evident that +' is an eigenvector of the operator

T’ corresponding to the eigenvalue (i, . We then have
0<l”2'x;(x°)f = | v'(xo)l = | [(r’- (do Tt v°] (xo) /=0.
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The simplicity of the value (z¢,  with regard to T’ is also
proved.

To prove the strong inequality (7) let us assume the con=
trary, i.e. let |vV/e &(T) _be an eigenvalue such that Il =
= @ . Let us put ¥ = (& e*? end let us denote 7=

= 1/'1 s 1 v‘z ’ ‘l/’l , 1/'2 € Y the corresponding eigenvector:

Trr=9Y 1.

We shall investigate two cases:

Case A . There is a positive integer ¢q such that %=
'—‘(a,q « Then Tgv‘ = (&’1,2' 7 and therefore the eigenvectors
Xgs V lie in the eigenmaenifold of the operator T% corres-
ponding to (woq . From this it follows that either v is a
real vector, or both the vectors Uy, V5, are also eigenvec-
tors of T . From the strong x -boundedness of T we obtain

( 4 denotes one of the vectors v, 77, v, ) that

(11) ¥ Py 3 x, for the real « .

When the vector 4L 1is a real eigenvector of the operatar
T , we deduce from (11) that
- P = - Py =
03 x, ?’Tu Xy =Y VTU=32, .
Thus z, is K=-positive eigenvector of the operator 19 cor-
responding to the eigenvalue (u.oq « By the lemma 2 19 s

%,~bounded and thus z, is a resl multiple of x, . Thus V=

= (% in the case A .
Case B . There does not exist a natural q such thsat

f“'o . Let us investigate the operator W =T + £ T?,
where £>0 . Then T = ¥ + € Y2  is an eigenvalue of the
operstor W . Evidently it is » +e»? = {cos ¢ +
+ &, cos 29 +1sm9+ i & sinZCj}from which
19+ € p2 = pz, (1+ €%l +2€ pe, cos 9)'1’
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Let € >0 be such that o +&»2 =[x lexpfiy{ unere
W =29T/k for some natural k . Then it will be * =
= (U, + E(u," )* and thus by the case A = ’Zxo for some
real constant 7 .

The assumption that there is en eigenvalue % for which
91 = 4, is false and thus the inequality .(7) holds. The
theorem 1 is proved.

Remar k., The Theorem 1 generalizes the theorem 3.4
of the paper [4], since every strongly XK-positive operator T
is also strongly u,-bounded, wlfiiree U, 1is an afbitrary vec=-
tor of the interior of the volumeYcone K ([1]p.267 ).

Also the assertion 3.5 of the psaper [4] can be generaliz-
ed,

Let Te [Y] and let

o0 oo
(12)  R(A, D= = (A=) m e 3 (A-p) ™ ny
be the Laurent expansion of the resolvent R(A, T) = (A I = m)~?
in the neighborhood of the isolated singularity *, € 6 (T) .
It is known ( [5]p.305) that T, e [ X], k=0, 1, ... and

where [® 1is the boundary of a circle ( having the

property C m 6(T) ={u, } (C - denotes the closure of C ).

From the Theorem 1 it follows that Bk s, k= 2,> 3; eee in
the expansion of the resolvent (12) of a strongly 4, ~bounded o=
perstor for which £(T) = U +V is a RN-operator, where £ €
€ O, (T) and f fulfils the inequalities (2), are zero-opera-
tors. Moreover it holds the following

Theorem 2. Let us assume thet
l. T 1is a strongly ‘“'c ~bounded operator.
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2. There is a function f£ € Of_(T) such that £(T) = U+ ¥
is a RN=-operator.
3. For the function f the inequelities (2) are fulfilled.
Then the operator B, -in the expansion (12) of the "r%%i%%’ﬁ\[
is also strongly 44, =bounded. v .
Proof.Let w be the eigenvalue for which A |< /%
if Ae6(r) . It is kmown ([5] p. 306 ) that B, is a pro-
Jector. Thus B, = B]i‘ ffor arbitrary k =2 1 .
From the relations

o (x) u 3 TP(X)x-g B(x)uw, , xek, x4 0,

1t follows (p) =p(B) X), «(x)>0, BCx)>0, sime & "T B, (L31),
o = 51.X )
oc (B; x) u, 3 T By x3 B(B) x)u, -
“PaPp = -pP P = E ‘
But 1, " T By =, Bl T By for arbitrary nstursl p .

Therefore

(B, x)
CL(%“) %434-’“3“‘—"—ﬁ; Ay s
(%o “

which proves the 4, -boundedness of the operator Bl .

The strongly @, -boundedness of the operator Bl' it fol-

lows from this same argument and from the relations
M, &~ (B x) PP Bx=q9) B x.

We have just proved that thé vector y =By x , where x€ K,
x40, is an eigem}ector of the operator T corresponding to
the eigenvalue (u, . '

This property is very important to the comstruction of the ei-

genelements (¢, , x  of the operator T Dby the Kellogg’'s ite-

o
rative method (see [3]) .
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