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REMARK ON TOPOLOGICAL SPACES WITH GIVEN SEMIGROUPS
Z. HEDRLIN and A, PULTR, Praha

J. de Groot proved in [1] that an arbitrary group C
can be represented as a group of all autohomeomorphisms A(T)
of a topological space T . To represent semigroups in Lhe si=-
milar way we need to replace A(T) by some semigroup of trans-
formations of T . Therefore we denote by E(T) the semigroup
of all local homeomorphisms into, that is: for £ : T—> T,
fe E(T) if and only if there exists a neighborhood 0(x) ,
for every x € T , such that FI0(x) : O(x) > £(0(x)) 1is a
homeomorphism. It is easy to see that every f e E(T) is con=
tinuous, and E(T) <forms a semigroup under composition.

The aim of this remark is to present, using a previous re=
sult of the suthors, & simple proof of the following theorem:

Theorem. Let Sl be a semigroup with a unity element,

cardinality of Sl being less than the first unaccessible

cardinal, Then there exists a To - topological space T such

that E(T) is isomorphic with ST .

If the cardinal of Sl is less or equal . Ty to = Hgs
1 j41 = 2 i for some natural 1 , then the proof of the theo-
rem can be made without the use of the axiom of choice.

Proof. If the cardinaiity of Sl is less than the first
unaccessible cardinal, then there exists a relation R on a
set X such that the semigroup C(R, X) of all compatible
transformations of X = under the com;?osition ~ is isomorphie

with Sl . Moreover, if x e Xls}:-hen thers exists y € X such



that either xRy or yRx . If the cardinality of S1 is less
or equal 4, for some nstural 1 , the proof can be made '
without the use of the axiom of choice. See [2],[3].

let T=Xufuvy,, vhere Y; 1s the set of all tri-
ples (x, y, 1), x, ye X, xRy, amd Y, 1s the set of
all triples (x, y, 2), X, ye X, xRy .

A set Oc T is openin T if and only if

(1) . (xy ys 1) e O implies "x€ 0,

(ii) (xy y, 2) € O implies x, y, (x, y, 1)e O .
Evidently, T 1is a To - topological space.

We are going to prove that the mapping {f-» LiIX§ , £e E(T),
is an iscmorphism of E(T) onto C(R, X) .

Let fe€ E(T) . Take any (x, y, 2) € T . There exists an
open set O containing (x, y, 2) such that £/0 : 0— £(0)
is a homeomorphism. By the definition, the set 0° , 0°’=
= {x} u{y}‘u{(x, y» 1)} v {(x, y, 2)} 1is open and contained
in O . Therefore f10" : 0°—> £(0°) is a homeomorphism. It
follcws that f£((x, y, 2)) = (x", ¥', 2), x°, 3y’ %,
£x, y, 1)) = (x%y 3°, 1), £(x) =x" , £(y) =23 . As
(x, y, 2) was arbitrery, we get £(X)c X, =xRy implies
£(xIRE(y) .

Let g:X—>X, ge€C(R, X) . We define £ : T—>T as
follows:

£(x) = g{x) for xe X,

£((x, y, 1)) = (g(x), g(y), 1) for all (x, y, )e T,

£{(x, y, 2))
As g€C(R, X) , £ is well defined, eand fe E(T) . If f£’e
€ E(T), £1X=g, then £°=¢,

The proof is finished. The question, whethar the To ~8pa~

(g(x), g(y), 2) for all (x, y, 2) € 1.

ce cen be replaced in the theorem by a Hausdorff ons, ssens
- 162 =~



to be open.
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