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Comment at i ones Mathematicae Uni vers i t at i s Carolinae 

4, 4 (1963) 

COMMUTATIVE POLYNOMIAL SEMIGROUPS CW A SEGMENT 

P.O. BAAYElf and Z7. HEDRLfN, Amaterdam,Praha 

1# Introduction 

A commutative semigroup of mappings of a set X i s a 

f a m i l y of mappings X —* X which i s a commutative semigroup 

under composition of funct ions . A commutative polynomial semi­

group of mappings of a subset X of the rea l l ine R (short­

l y : an X-cps) i s a commutative semigroup of mappings X—*X, 

a l l elements of which are r e s t r i c t i o n s t o X of (real) poly­

nomia l s on R • Such a semigroup S i s cal led maximal i f e -

very continuous map g : X—*X which commutes with a l l f e S 

i t s e l f belongs t o S , and en t i re i f i t contains (res tr ic t ions 

t o X of) polynomials of every non-negative degree. 

I f S^ i s a semigroup of continuous maps Xi-—*- X^ ( i -

=* 1 , 2 0 , and i f T i s a homeomorphism of X* onto Xg such 

t h a t S^ * { T o f o V ^ l f € S-J , then S^ and S2 are c a l l -

®d equivalent (by means of t ) • In that case the transformation 

f - ^ r o f o r i s an isomorphism of the abstract semigroup 

Sj, onto the abstract semigroup S^ . 

In t h i s note we determine, up to equivalence , a l l ent ire 

I - c p s , where I i s the c losed unit segment TO, l j . Moreover, 

we e s t a b l i s h which of these I - cp s are maximal and which not# 

We denote by JT the segment [ - 1 , l J . 

2 . Commutative polynomial semigroups of mappings R—^R 

and J ——̂  «J • 

I t fo l lows from r e s u l t s of J .F . R i t t [ 7 , 8J and of H.B. 
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Block and H.P. Thielman [5] that every entire R-cps is equi­

valent by means of a linear transformation to one of the fol­

lowing three semigroups of polynomials: 

(i) the semigroup P , consisting of the maps 

Po> Fl> P2» •*• W i t h 

Pn(x) * x
n ; 

(ii) the semigroup P* , consisting of all Pn, n > 1 

aid the map PQ such that 

PQ(x) « 0 for all x ; 

(iii) the semigroup T of all Chebyshev polynomials 
To> Tl» T2 J ••• > w^re 

T (x) =- cos (n. arc cos x) . 2 

The first two semigroups are not maximal; e.g. consider x3. 

Lemma 1. There exists a unique maximal commutative semigroup 

P (P*) of continuous maps J—yj containing PI J (¥*IJ , res­

pectively). The semigroup P (P*) consists of the following 

maps: all maps x-^lxl- £>D o real number; all maps x-Wx 1 • 

. sign x ,£> 0 a real number; and all maps in P (in P*, res­

pectively). 

Proof •> It is immediately verified that P and P* are commu­

tative semigroups. In ord^r to show their maximality, and the 

fact that they are the only maximal semigroups containing P* 

or P* , we proceed as follows. 

Let f be any continuous map R-^R commuting with all 

maps in P or in P* • Take ar\y a with 0 < a < 1 and let 

f(a) = <^ . As ot = P2f(/a), <*.- > 0 if <*• = 0 , it follows that 

fie?) = cCr = 0 for all rational r , because f o Pn = Pn o f 

for all natural n . Hence f(x) = 0 for x ^ 0 ; if x .*0 , 

P^f(x) = f(x^) = 0 implies agsin f(x) = 0 . Thus f is iden­

tically zero. 
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Assume at > 0 and l e t € «r R with a* =- oc . Then 

as f and Pu commute, f ( a r ) =» a r for a l l rat ional r ; hen­

ce f (x) * x £ for x •"* 0 . If x < 0 f then P^f (x) » fP2(x) = 
38 (x2) f hence f(x) * - |xf € • As f i s continuous, the lem­

ma follows. 

The s i tua t ion i s different for the semigroup T : th is semi­

group i s maximal. In order to show t h i s , we consider the follow­

ing mappings of the unit in terval I into i t se l f , f i r s t i n t ro ­

duced in.f-2]: 

t 0 (x) - 0 for a l l x $ 

and, i f n -> 1 •: 

V i N a 0 > V 2 * 4 ^ * 1 (** 0,1,2,..., f f j ) ] 

\ I f n * ^n^i i s l i n e a r (k a ° I 1 J 2 » •••> ^"^ > 
These so-caULed multihats are eas i ly seen to constitute a commu­

tat ive semigroup M ; in f ac t , t n o tffl » t n + m . In [2] P.C<? 

Baayen, W. Kuylc md M«A. Msurice proved much more: the semigroup 

of a l l t n , ii * 0,1,2, . . . , i s a maximal commutative semi­

group of continuous mans I—>I • 

Lemma 2. The semigroup M i s equivalent to the semigroup T* 

of a l l Che by she v polynomials Tn, r e s t r i c t ed to the segment J," 

by means of the homeomorphism or : [ 0 , 1 J .—* £ - 1 , 1 J Such thtft 

t x a COS JT X v 

Proof: immediate. 

Hence we have shown: 

Lemma 3« The J-cps T i s maximal. 

This strengthens considerably a resul t of G. Baxter and %J«T.. 

Joichi [ 3 ] , who showed that T cannot be embedded in a i -parar 

meter semigroup of commuting functions* 
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We conclude t h i s s ec t ion with a t r i v i a l i t y . 

Lemma 4 . Let Qn, Ox be polynomials commuting on some non-de­

genera te segment. Then Q, and C*u commute everywhere on H . 

3• Commutative polynomial sernigroups of mappings I -> I 

I t follows from the r e s u l t s of s e c t i o n 2 t h a t every e n t i r e 

I - c p s i s equivalent by means of * l i n e a r t r ans format ion t o a 

semigroup Si A , vshere S i s one of the R-cps T, P , P * 

and A i s a closed segment f a , b j , a < b , t h a t i s i n v a r i ­

ant under S • 

The only non-degenerate segment mapped i n t o i t s e l f by T 

i s f - l f * l 3 • The only n o n - t r i v i a l segments mapped i n t o them­

se lves by P are the segments [ - a , l j , wi th 0 * a ^ 1 ; 

we wr i t e P(a) fo r the f - a , l ] - cps of a l l P n | f - a , l j , 

n =» 0 , 1 , 2 , . . . . The only n o n - t i i v i a l segments i n v a r i a n t under 

P * are the segments [ - a , b j , with 0 ^ a *£ 1 , a 2 - £ b * £ l , 

b 4s 0 ; we write P * (a , b) f o r the f - a , b J -cps of a l l 

P n f f - a , b j , n * 1 toge ther with P* I f - a , b j . 

Lemma 5 . Each of the semigroups P ( a ) , 0 * a -S 1 , i s not ma­

ximal , and i s contained in a unique maximal f - a , l j -semigroup 

P(a) . Similar ly each P * ( a t b) i s contained i n a unique max­

imal [ - a , b3 -semigroup P * ( a , b) . 

Proof. In the same way as i n the proof of Lemma 1 one shows 

t h a t P(a) = P || f - a , l j i s the unique maximal commutative s e ­

migroup of continuous maps f - a , l j — > f - a , l j conta in ing 

P(a) . S imi la r ly P * (a , b) = F * / | f - a , b j . 

Remark: I f S i s a semigroup of mappings of a s e t X i n t o i t ­

s e l f , and i f A c X , then S II A denotes the semigroups of map­

pings of A i n t o i t s e l f , cons i s t i ng of a l l mappings flA such 

t h a t f e S and f (A)cA ( c f . [ 6 j ) . 

- 176 -



Theorem 1 . There are two maximal e n t i r e I - c p s ; they are both 

equivalent t o T* (or t o M ) . 

Proof. Every maximal e n t i r e I - cps must be equivalent by means 

of a l i n e a r map t o T ' - T I [ - 1 , +1J . There e x i s t two l i n e a r 

maps of [ - 1 , -KL] onto I = [ 0 , l j . 

Lemma 6. I f 0 < a, b < 1 , then P(a) and P(b) are equiva­

len t by means of the homeomorphism T , 

T C X ) * s ignx . Ix ( , 

w h e r e £ =* lM-k # 
log a 

Lemma 7. Let 0 * a± -£ 1 , a| -£ b± £ 1 , b± 4= 0 (i * 1,2 ). 

The semigroups P* (a^, b-̂ ) and P^ta^, b2) are equivalent 

if and only if there exists a real number €. 4» 0 such that 

a2 * al * tb s «i • 

Proof. Suppose P * (a^ , b-j) and P * ( a 2 , b^) are equivalent 

by means of T . Then we have , f o r a r b i t r a r y x e [ - a , , b^J 

md fo r a r b i t r a r y i n t e g e r s n ** 1 , t h a t P n (x) = ( T o P or) 

(x) ; i . e . ( T o P n ) (x) » (Pn o r ) ( x ) . I t fol lows (cf. lemma 

1 ) t h a t e i t h e r T i s of the form: T (X) = / X ( £ , f o r a l l 

x € [ - a - , b j J , where £ i s some r e a l number - as T i s a 

homeomorphism t h i s i s only poss ib le i f a, « 0 - or T i s of 

the form: f (x) a I x l • s i g n x • As c l e a r l y we must have: 

T ( « U ) a a^ , T(b-j) - h-} , the a s s e r t i o n fo l lows . 

The next lemma i s e a s i l y proved: 

Lemma 8. No semigroup P(a) i s equivalent t o a semigroup 

P * (b, c) . 

Consequently we have: 

Theorem 2. There are i n f i n i t e l y many non-equivaLent non-maximal 

e n t i r e I-*cps. Each of them i s equivalent t o one of the fo l low­

ing semigroups, which are a l l mutually inequiva>nt: P(0) , 
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P ( | ) , P ( l ) ; P * ( a , 1 ) , O s < a ^ l ; P * (a, | ) , 0 * a * | . 

Theorem 3 . Every entire I -cps i s contained i n a unique maxi­

mal commutative semigroup of continuous maps I - > I • Two en­

t i r e I - c p s are equivalent i f and only i f the maximal commuta­

t ive semigroups in which they are contained are equivalent. 

4 . Remark on mappings commuting with Tn or P , n ** 2 . 

I t was shown by P.C. Baayen and W. Kuyk in. f l J that every 

open map of I into i t s e l f that commutes with t 2 i s i t s e l f a 

multihat t n .Prom t h i s i t fo l lows almost at once that every 

continuous map commuting with t~ i s e i ther a t n or i s e-

verywhere o s c i l l a t i n g (nowhere monotone). 

This resul t has been improved very much by G. Baxter and 

J.T. Joichi [ 4 ] , who showed the fol lowing theorem 

If a continuous map f : I - ^ I commutes with some mult i -

hat t , n £ 2 , i t i s i t s e l f e i ther a hat-funct ion or a con­

stant map. 

Now we saw in sect ion 2 that the semigroup M of a l l hata t 

i s equivalent to the semigroup T ' of a l l Chebyshev polynomials 

on [ - 1 , + l J . 

Hence we conclude: 

Theorem 4 . Every non-constant continuous map of. f - 1 , **lj i n ­

to i t s e l f that commutes with a Chebyshev polynomial Tn with 

n > 2 , i s i t s e l f a Chebyshev polynomial. 

For the maps ? n , n ? 2 , the s i t u a t i o n i s completely 

d i f ferent . Consider e .g . continuous maps of f 0 , i J in to i t ­

s e l f which commute with P^ on that in terva l . 

There e x i s t multitudes of such functions. For l e t 0 < a < 1 , 

and l e t fQ be any continuous function of [a f a J into 

(0, 1) such that l f 0 ( a ) ] 2 =» f0 (a 2 ) . I f we def ine: 
, .. »- o"*n i *>n ,- o ^ l o11-

f (o) = 0 , fCl) * 1 , f ( x ) * tt0(y? )J 2 i f x c fa 2 ,a 2 J 
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(n integer), f will be a continuous map I —> I commuting 

with P2 . 
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