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Commentetiones Mathematicae Universitatis Carolinae
4, 4 (1963)
COMMUTATIVE POLYNOMIAL SEMIGROUPS QN A SEGMENT
P.C. BAAYEN and Z. HEDRLIN, Amsterdam,Praha

l. Introduction

& commutative semigroup of mappings of a set X 1is a
family of meppings X —» X which is a commutative semigroup
under composition of functions. A commutative polynomial semi-
group of mappings of a sub‘set X of the real line R (short=
ly: an X-cps) is a commtative semigroup of mappings X—X,
all elements of which are restrictions to X of (real) poly~-
nomials on R . Such a semigroup S is éalled maximal if e~ ’
very continuous inap g : X— X which commutes with all fe S

itself belongs to S , and entire if it contains (restrictions

to X of) polynomials of every non~negative degree.

If S; ia a semigroup of continuous maps Xy —> X4 (i =
= 1,2), and if = 1is a homeomorphism of X; onto X, such
that S, = {7 of oxrtifre Sit 4 then S; and s, ere call-
ed equivelent (by mems of T ). In that case the trensformation

f>ro0fov -1 is an isomorphism of the abstract semigroup
SI onto the abstract semigroup S2 .

In this note we determine, up to equivaience, all entire
I-cps, where I 1is the closed unit segment [‘0, 1] . Moreover,
we establish which of these I-cps are meximal and which not,
We denote by J the segment [ -1, 1] .

2. Commtative polynomial semigroups of mappings R—R
md J—J.
It follows from results of J.F, Ritt [7, 8] and of H.D.
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Block end H.P. Thielman [5] that every entire R-cps is equi-
valent by means of & linear transformation to one of the fol-
lowing three semigroups of polynomials:
(i) the semigroup P , consisting of the maps
Pyy P1y Pyy ese With
Pn(x) =x0 ;
(ii) the semigroup P¥ , consisting of all Py n>1
and the map P: such thsat
Po(x) =0 for 21l x ;
(iii) the semigroup T of all Chebyshev polynomials
Tos Tl’ Ty, eee , where
T,(x) = cos (n. arc cos x) . 2
The first two semigroups are not maximal; e.g. consider x3.
Lemma 1. There exists a unique maximal commutative semigroup
P (P*) of continuous maps J—>J containing PIJ (P¥[J , res-
pectively). The semigroup P (P*) consists of the following
maps: all maps x—>lx I'E, ¢ > ® real number; all maps x—>lxls.
. 8ign x ,€>0 a real number; and all maps in P (in P *, res-
pectively).
Proof. It is immediately verified that P and P* are comm-
tative semigroups. In ord-r to show their meximality, and the
fact thaet they are the only meximal semigroups containing i
or fE;, we proceed as follows.

Let £ .be any continuous mep R >R commuting with all
maps in P or in P¥ , Take ary a with O< a <1 and let
f£(a) = & , As & = sz(fs), ®« > 0if A =0, it follows that
£(a") =« =0 for all rational r , because f o P,=P,o0f
for all natural n . Hence f(x) =0 for x >0 ; if x <0,
Pf(x) = £(2) = 0 implies agsin f£(x) = 0 . Thus f is iden-

tically zero.
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Assume ot > 0 and let € € R with af = o¢ . Then
&s £ and P, commite, £(aF) = a¥€ for all rational r ; hen-
ce f£(x) =xf for x> 0. If x< 0, then Bf(x) = fR,(x)=
= ()% , hence f(x) =2|x(®, s £ 1is continuous, the lem-
ma follows.

The situation is different for the semigroup T : this semi~
group is maximal, In order to show this, we conasider the follow-
ing mappings of the unit interval I into itself, first intro-
duced in [2]: ’ »

to(x) =0 for all x ;
mmd, if n21 :
t 2y =0, £, @) =1 (k=0,1,2,...,[2]) ;

g | [£, BL is linear (k = 0,1,2, ..., n-1) &
These so-called multihets are essily seen to constitute a commu-
tative semigroup M ; in fact, t, oty =t . . In [2] P.Ce
Baayen, W. Kuyk snd M.A. Maurice proved much more: the semigroup
of all t,, n=0,1,2, ..., is 8 meximal commtgtive semi-
group of contihuous meps I—>1I .

Lerma 2. The semigroup M 1is equivalent to the semigroup T’

of .l Chebyshev polynomials T,, Trestricted to the segment Js

by means of the homeomorphism = : [0,1] = [-1, 1] such that
] TX =C08 JTX ~

Proof: immediste.

Hence we have shown:

Lemme 3. The J=cps T is maximal.

This stirengthens considerably a2 result of G. Baxter amnd J.T.

Joichi [3], who showed that T cannot be embedded in a l-para-

meter semigr&xp of commuting functions.
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We conclude this section with a triviality.
Lemma 4. Let Ql' 02 be polynomisls commuting on some non-de=-

generate segment. Then Ql and Qz - commute everywhere on R ,
3. Commutative polynomial semigroups of mappings I—I
It follows from the results of section 2 that every entire

I-cps is equivalent by meens of & linesar transformation to a

, vhere ‘S is one of the R-cps T, P, P¥*

a<b, that is invari-

semigroup S|A
and A 1is a closed segment [a, bJ,

ant under S .
The only non-degenerate segment mepped into itself by T
is [=1, +1] . The only non~trivial segments mapped into them-

selves by P are the segments [ -a, 1] , with O€a €1 ;

we write P(a) for the [=-a, 1] -cps of all Py |[-a, 1],

n =0,1,2, ... . The only non-trivial segments invariant under

P* are the segments [-a, b], with 0€a €1, a°< b €1,

b O ; we write P*(a, b) for the [ =-a, b]-cps of all
P l[-a, ], n 31 together with P} I[=-a, bJ.

Lemma 5. Each of the semigroups P(s), O & a € 1 , is not mae-

ximal, and is contained ir & unique maximal [-a, 1] -semigroup

P(a) . Similarly each P*(a, b) 1is contained in a unique mex-

imel [ -a, bl -semigroup P ¥ (a, b) .
Proof. In the same way as in the proof of Lemma 1 one shows
that P(a) =P [-a, 1] is the unique maximal commutative se-

migroup of continuous meps [ -a, 1]—> [ -a, 1] containing

- P(a) . Similarly P* (a, b) = P*[|[-a, b] .
is a semigroup of mappings of a set X into it-

Remark: If S
self, and if Ac X , then SllA denotes the semigroups of map=

pings of A into itself, consisting of all mappings flA such

that fe& S and f(A)cA (cf.[6]). .
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Theorem l. There are two maximal entire I-cps; they are both
equivalent to T“ (or to M ).
Proof. Every maximal entire I-cps must be equivalent by means
of a lineer map to T°= T |[-1, +1] . There exist two linear
maps of [ =1, +1]1 onto I = [0, 1]. "
Lemma 6, If O< a, b<l, then P(a) and P(b) are equiva~
lent by means of the homeomorphism <,

T (x)= signx. x|,

where € = log b
log a

Lemma 7. Let O€a; €1, a2&b €1, bj=0 (1=1,2),
The semigroups P#* (al, bl) and P*(az, b2) ere equivalent
if and only if there exists a real number € # 0 such that
a, = aJe_ N b2 = bf .
Proof. Suppose P* (g, b;) =and P*(az, b2) are equivalent
by means of T . Then we have, for arbitrary x € [ =815 bl]
md for arbitrary integers n 31, that B (x) = (z "o B 02)
(x) ; i.ee (T oP) (x)= (P, 0 ) (x) . It follows (cf. lemma
1 ) that either 7 is of the form: = (x) =[x(%, for all
x €[ -a;, by ] , where € is some real number - as T is a
hbmeomorphism fh:l.s is only possible if a; = O‘ - or 7 is of
the form: 72 (x) =lxl£ . 8ign x . As clearly we must have:
t‘(al) =a,, 't'(bl) = b, , the assertion follows.

The next lemma is easily pro ved:
Lemme 8. No semigroup P(a) is equivalent to a semigroup
P¥* (v, c) .
Consequently we have:
Theorem 2. There are infinitely many non-equivaknt non-maximal
entire I«cps. Each of them is equivalent to one of the follow-

ing semigroups, which are all mutually inequiveknt: P(0) ,
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PG) , P(1); P¥(a, 1), 0O€a€l; P¥(a, 3) , O€acs.
Theorem 3. Every entire I-cps is contained in & unique mexi-~
mal commutative semigroup of continuous maps I—>I . Two en~
tire I=-cps are equivalent if and only if the maximal commuta-
tive semigroups in which they ere contained are equivalent.

4. Remark on mappings commiting with T, or P, n22.

It was shown by P.C. Baayen and W. Kuyk im [1] that every
open map of I dinto itself that commutes with ts is itself a
multihat 'tn « From this it follows almost at once that every
continuous map commuting with tz is either a t, or is e~
verywhere oscillating (nowhere monotone),

This result has been improved very much by G. Baxter amd
J.T. Joichi [4], who showed the following theorem

If & continuous map £ : I—>I commtes with some multi-

hat ¢ n =2, it is itself either a hat-function or a con=-

n°?
stant map.
Now we saw in section 2 that the semigroup M of all hats tn
is equivalent to the semigroup T° of all Chebyshev polyncmials
on [-1, +1].

Hence we conclude:

Theorem 4. Every non-constant continuous mep of, [ -1, +1] in-
to itself that commites with a Chebyshev polynomial T, with
n 22 , is itself a Chebyshev polynomial.

For the maps 'Pn, n > 2 , the situation is completely
different. Consider e.g. continuous maps of [0, 1] into it-
self which commute with P2 on that interval.

There exist multitudes of such functions, For let O«<ac<cl,
and let f, be any continuous function of [az, a] into
(0, 1) such that [f, (a)]% = £, (a?) . If we Qefine:

£(o) =0, £(1) =1, f£(x)= [fo(xz-n)J 2% yr xela?
- 1‘78 -
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(n integer), £ will be a continuous mep I—>I commuting

with P2 °
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