Commentationes Mathematicae Universitatis Caroline

Karel Čulík
On equivalent and similar grammars of Algol-like languages (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 5 (1964), No. 2, 93--95

Persistent URL: http://dml.cz/dmlcz/104962

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1964

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

5, 2 (1964)
 aN EQUIVALENT AND SIMILAR GRAMMARS OF ALGOI-IIKE LANGUAGES (Preliminary communication) K. ČULfK, Praha

```
Let \(G=\langle T, N, \mathcal{R}, S\rangle\) be a context-free grammar, i.e.
``` \(T\) and \(N\) are terminal and nonterminal vocabularies resp., \(S \in N\) and in \(\mathscr{R}\) are the rules \(\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)\), where \(a_{0} \in N, a_{i} \in T \cup N\) for each \(1 \leq i \leq n, n \geq 1\) ( \(a_{1}, a_{2} \ldots a_{n}\) is said to be strong over \(T \cup N\), E.g. in ALGOL \(60 T\) and \(N\) are sets of basic symbols and metalinguistic variables resp., \(S=\langle\) programm \(\rangle\) and \(\mathcal{R}\) contains elementary syntactic definitions \(x:=y z n\) (the metasymbol | meaning "or" is omitted). Let \(L\) be the language generated by \(G\) and let \(\mathbb{R}\) be the set of all phrase markers of elements in \(L\). The phrase markers were introduced by \(N\). Chomsky and in [1] are defined as double graphs the vertices of which are labelled by symbols of TUN.

If we identify two nonterminal symbols \(x\) and \(y\), i.e. if we substitute \(x\) instead of \(y\) in all places in all rules of \(\mathcal{R}\) and if we omit \(y\) from \(N\), we get a new grammar \(G *\). It is easy to see that \(L^{*} \supset L\) and the mapping \(\Phi\) of \(\mathbb{Z}\) into \(\left\{^{*}\right.\) is determined by the mentioned substitution. If \(\Phi\) is a mapping onto \(\phi^{*}\) then \(x\) and \(y\) are said to be interchangeable in G.E.g. if to each \(\left(a_{0}, a_{1} a_{2} \ldots a_{n}\right) \in \mathscr{R}\) where \(a_{0}=\) \(=x\) (or \(a_{0}=y\)) exists mother rule \(\left(b_{0}, b_{1} b_{2}, \ldots b_{m}\right) \in \mathcal{Z}\) such that \(m=n, b_{0}=y\) (or \(b_{0}=x\)) and for each \(1,1 \leqslant\) \(\leq 1 \leq n\) either \(a_{i}=b_{1}\) or \(a_{i}, b_{i} \in\{x, y\}\), then \(x\) and y are interchangeable.

The homomorphism of a grammar \(G_{1}\) onto a grammar \(G_{9}\) is a mapping \(Q\) of \(T_{1} \cup N_{1}\) onto \(T_{2} \cup N_{2}\) such that
1) \(g\) is an one-to-one mapping of \(T_{1}\) onto \(T_{2}\),
2) \(\left(a_{0}, a_{1} a_{2} \ldots a_{n}\right) \in \mathscr{R}_{1}\) implies \(\left(\varphi\left(a_{0}\right), \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots\right.\)
\(\left.\ldots \varphi\left(a_{n}\right)\right) \in \mathcal{R}_{2}\) and
3) \(\varphi\) induces the mapping \(\Phi\) of \(R_{1}\) onto \(R_{2}\). Two is ammars are said to be equivalent if it is possible to map them homomorphically onto the same grammar.

Another way how to change the grammars are extensions and reductions. A grammar \(G_{p}\) is an extension of the grammar \(G_{0}\) if there are grammars \(G_{1}, G_{2}, \ldots, G_{p-1}\) such that the following condition holds for each \(i, 1 \leqslant i \leqslant p\) : there exists a rule \(\left(a_{0}, a_{1} a_{2} \ldots a_{n}\right) \in R_{i-1}\), a symbol \(b \notin \int_{\dot{=}=0}^{-1}\left(N_{t} \cup T_{t}\right)\), an index \(j, 1 \leq j \leq n\) and an integer \(k \geq 0,1 \leq j+k \leq n\) such that \(T_{i}=T_{i-1}, N_{i}=N_{i-1} \cup\{b\}, \mathcal{R}_{i}=\left(\mathcal{R}_{i-1}-\right.\) - \(\left.\left\{\left(a_{0}, a_{1} a_{2} \ldots a_{n}\right)\right\}\right) \cup\left\{\left(a_{0}, a_{1} \ldots a_{j-1} b a_{j+k+1} \ldots a_{n}\right)\right.\) (b, \(\left.\left.a_{j} a_{j+1} \ldots a_{j+k}\right)\right\}\) and \(s_{i}=s_{i-1}\). E.g. it may be \(\mathcal{R}_{0}=\) \(\left\{(S, b \vee t),(S, b\right.\) w) \(\}\) and \(\mathcal{R}_{2}=\{(S, b y),(y, w),(s, b x)\), (\(x, \nabla t)\}\). In this case \(x\) and \(y\) are interchangeable, but they do not satisfy the above mentioned sufficient condition.

The composition + of two sets of rules \(\mathscr{V}_{1}\) and \(\mathscr{O}_{2}\) is defined as follows: \(\mathscr{O}_{1}+\mathcal{F}_{2}=\left\{\left(\theta_{0}, x_{0} y_{1} x_{1} \ldots y_{n} x_{n}\right\} ; x_{i}\right.\) and \(y_{j}\) are some strings such that there are \(\left(a_{0}, x_{0} b_{1} x_{1} \ldots\right.\) \(\left.\ldots b_{n} x_{n}\right) \in \mathcal{F}_{1}\) and \(\left(b_{j}, y_{j}\right) \in \mathcal{\gamma}_{2}\) for some symbols \(b_{j}\) and for each \(j, 1 \leq j \leq n\}\).

A nonterminal symbol \(x\) of the grammar \(G\) ia said to be reductible if there is no rule in \(\mathcal{R}\) of the form (\(x, p\)), where \(p\) is a string containing \(x\). The symbol \(x\) is reductible if and only if in \(\mathscr{\gamma}_{1}+\mathscr{X}_{2}\) is no rule containing \(x\), where \(\mathcal{\gamma}_{1}\) and \(\mathcal{O}_{2}\) are the sets of all rules in \(\mathcal{Z}\) con-
taining \(x\) in their right and left side resp.
Let \(x\) be \(a\) nonterminal reductible symbol in \(G\). It is natural to construct a new grammar \(G^{*}\) as follows: \(N^{*}=N-\) - \(\{x\}\) and \(\mathcal{R}^{*}=\left(\mathscr{R} \cup\left(\mathcal{F}_{1}+\mathcal{F}_{2}\right)\right)-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)\). \(G^{*}\) is said to be direct reduction of \(G\). A grammar \(G_{p}\) is called reduction of the grammar \(G_{0}\) if there are \(G_{1}, G_{2}, \ldots G_{p-1}\) such that \(G_{i}\) is direct reduction of \(G_{i-1}\) for each \(i\), \(1 \leq 1 \leq p\). Some simple examples of the reduction in ALGOL 60 are shown in [2].

Now two grammars are said to be strong or weak similar if they have equivalent extensions or reductions resp.

If \(x\) and \(y\) are interchangeable in \(G\) and \(G^{*}\) is direct reduction of \(G\) with the reduced symbol \(z, x \neq z \neq y\), then \(x\) and \(y\) are interchangeable in \(G^{*}\) again. If two grammars are strong similar then they are weak similar too, but not conversely. E.g. \(\mathcal{R}_{1}=\{(S, b z),(b, x y)\}\) and \(\mathcal{R}_{2}=\) \(=\{(S, x c),(c y z)\}\) are weak similar because \(\mathcal{Z}=\) \(=\{(S, x y z)\}\) is their common reduction, but there are evidently no equivalent extensions of them. There are some lattice properties of the greatest extensions and smalle at reductior. in regard to the equivelence relation among the grammars.
References:
[1] K. ČULfK, Applications of graph theory to mathematical logic and linguistics, Theory of graphs and it applications
[2] K. CULfK, Formal structure of ALGOL and simplication of its description, 75-82, Symbolic languages in data processing (Roma 1962), Gordon-Breach, N.Y. 1963.
- 95 -```

