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BETTI NUMBERS OF REGIONS OF ATTRACTION
0. B{JEK, Praha

Summary: it is shown that in a dynemical system, under
certain conditions, the Betti numbers of a limit set coincide
with those of regions of uniform attraction.

Let P be a topologicel space; a (global) dynamical
gystem on P (cf. [3, chap. V], this journal, p. 121 ) is a
map T with the following properties:

1° T :P x E' - P 1is continuous (the value of
T at (x, ©) will be denoted by x T 8 ),

2° xTto0=x,

3° (xTe)Te,=xTI(e +6,.

For fixed © € E' , define continuous maps tg: P —> P
by

tgx=xT4O.
From 2°, t, is the identity mep; from 3° ,

tots = tors

in fact, it is obviocus that {tgig (gl form a continuous abe-
lian group of homeomorphisms P 2P .

Further terminology: & trajectory (through x e P ) is
a subset of P of the form

, {xT0:06e 31} ;
a criticeal point is a common fixed point of all to g 1o @
singleton trajectory; a gycle is a non-singleton trajectory
through a fixed point of some tg with @40 ‘4@ is then
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8 period of the cycle); a subset X ¢ P is (+)-inveriant if
teX:x for all @ >0,

Proposition l. Each te is homotopic to the identity man,
via the homotogy h : P x<0, 1 > -=> P,

hix,A) =x TA®.,

This result was.exploited in [this journsal, pp. 123-41to
obtain conditions for existence of critical points. It may be
noticed that 3° is not used at all, so that stronger results
may be expected.

A second proposition we shall reproduce here was obtain-
ed in [2, theorem 6); the Jq-characteristic is defined there;
d‘l’q will denote the gq-th Betti number, 4 the Euler cha-
racteristic,
Proposition 2. Let f : X—>X be a continuous map of a
triangulable space X , let the iterates of f converge,
2~ £% uniformly a8 n — &0 .
Then, if Y = £% (X) is triangulable,
Ig(gM = —L—_ﬂl(f)x
forall q and 1S m & o0 .

Theorem, Given a dynamical system on a topological space P,
Let € > 0, let X ¢ P be (+)=-invarisnt and such tgrtygr
t38’ e«ss converge uniformly on X .qél'hen, setting X _, =

N
~ nsl tno(X)'
TM(X) = m(Xy) foreall q
if both X, X, are triangulsble.
Proof. Note first that t ¢= tg , the n=th iterate of tg ;

ad that X is the image of X under 1lim tne + From pro-
position 2, ’

. (Y)
-l = J (to)
1-2 q
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for all q .

Homotopic meps have coinciding homologues, md hance coinci-

ding Jq-—characteristics; thus from proposition 1,
o (%)
(tg) = §g (ddp) = -
1 -2
for all q « The ass~rted formula now follows from the two
exhibited relations.

Iq

Corollsry 1. With the assumptions of the theorem, x (X) =
- = q
= X (Xo ). (This follows from { = Zq(—l) ™y o)
Corollary 2. Let x, be & critical point of a dynami-
cal system on P . Then, for any triangulable (+)=invariant
set X ¢ P such that

xT4® — x, for € - + o0 , uniformly for x € X,
there hold

m(x) =1, rrq(x) =0 for q*+ 1.
In particular, if X, is uniformly asymptotically stable,

then this holds for each triangulsble (+)=invarismnt set suf-

ficiently near to X, .
Corollary 3. Let C be a cycle with period € > 0 of a

dynamical system on P . Then, for any triangulable (+)-inva-
riant set X ¢ P such that

linx T n® € C, uniformly for x ¢ X,

therrenlgld
M(X) = Mm(x) =1,
Te(X) =0 for O qs$l.
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