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A THEOREM OF HAHN-BANACH TYPE FOR LOCALLY CONVEX TOPOLOGICAL
SPACES
J. VANISEK, Praha

By the well known Hehn-Danach theorem every continuous
linear functional defined on a linear subspace o real or
complex normed linesar space can be extended onto the whole
space so as to remoin linear, continuous, and with preserving
the norm, The extension of continuous linear transformations
between two normed linear spaces has been studied by several
authors. This problem is connected with the question of the
existence of projections of norm 1 of a normed linear spa=-
ce E into different subspeces of E (see [3]).

Let E be a given ncrmed linear space, E 1is said to
have the extension property if, for any normed linear space
X and every continuous linear transformetion f of the line-
ar subspace Y c X into E there exists a continuous linear
extension ' 5 £ such thet % maps X into E and [ & =
=l£ll « The Hahn-Banach theorem says simply that every one-di-
mensional normed linear space has the extension property.

Nachbin [5] has proved: Normed linear spaces with the
extension property are exactly the spaces with the following
binary intersection property: If fJl;, i€ I} is a system
of cells in E such that every two members of them intersect,
then the intersection {:& -fli is non-void. Another cha=

racterization of normed linear speces with the extension pro=-
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perty is due to Kelley ([4])). Eis result is that E has the
extension property if ond only if E = C(Q), where Q is an
extremally disconnected compact Heusderff topologicel space.

In this paper we shall give a convenient definition of
the extension priperty and the binary intersection property
of 3 locally convex topologicnl linear sprce, which are a ge=
neralizution of those properties for normed linenr spaces,
Theoren 1 is a seneralization of Wachbin’s result [5] and
theoren 2 rives 2 topological characterization of locelly con=-
vex topolocical linear spaces with the extension propsrty in
our sense.

.

le welinition and terminology

Let E be 2 real locally convex topoiocical lineor spa-
ce and ¥r # subbase consistins of convex, symmetric and
, UV in & we
put WU ~ 1V if there exist positive numbers A and (a.
sucl. that

clonsaed neirhtours of zero in E . Tor U

AUV  ana Vel .
Evidertly, ~s is an equivalence on &* and & is divided
by A~ into classes of mutually equivalent elemerts. A set
vwhich contains exactly one clement of each class of this equi=-
valence will be called @ skeleton of the spcce = . As the de~-
finition of th~ skeleton of L Jdé:rends onr the subbese /3

2,

?
the skeleton of* E 1is not determined unicuely by the topclo-

gy of E ., For exnmple, if E, is the Tuclidean plan, the
class 721 of one set { (x, y): “ + ¥ £ 1} end tie
class 722 of two sets {(x, y) :lx|l & 1} and

{(x, ) : Iyl & 1} are both skeletons of 3, . 1f R is
a skeleton of E, Ue#AR , x € E and A is a positive

number, then the set - 146 -



x+ AU ={x+Ay:yeU}
is telled a d2 -solid in E , Two # -solids
5+ AU and x, + A, U
are called similar,

A skeleton R of B 1is said to have a binary inter-
section property if any system of & -solids whose every
two similar & -solids intersect, hes a non-void interse-
ction,.

It is clear that if E 1s a normed lineaor space, then
the set containing only the unit cell {xe E :lixl & 13}
is a skeleton of E; E has the binary intersection proper-
ty in the usual sense if and only if this one-element skele-
ton ha; the binary intersection property. On the other hand,
E, has not the binary intersection property in usual sense,
but there exists a skeleton ( {(x, y) :Ix| # 1},

{(x, ) : Iyl # 1} ) of E, which has this property.

Let Y be a locally convex topological linear space and
£ be a continuous linear operator on Y into E ; let &
be a skeleton of E . From the continuity of f , for each

U € & there exists a neighbourhood ¥ of zero in Y

such that f(¥) c U . Let X be a locally convex topolo-

gical linear space which contains Y as a subspace. Then
there exists a neighbourhood U/ of zero in X such that

WA t= 1 . Let us denote by (AR , f, X >  the set

of all mappings & of 7 into the set of all neighbour—
hoods of zero in X such that f( 2 (U)A Y) c U for any

UeR . let ve(R,£,X) ; alinear operator &

with domain 2, Yc Zc X, into E which satisfies the

conditions - 147 =



1. F o5 £ (de. £ (x) =22(x) for xeY),
2 F (v (UnZ)cUtorany UeR ,
is s2id to be-a 7 =continuous extension of f . It is obvi~-
ous that any < =-continuous extension is a continuous linear
0p§rator. A skeleton % of E 1is said to have an extension
property if for each topological linear spaces X o Y each
continuous linear mapping £ of Y into E and each
*e{N,f,X ) there exists a T -continuous exten-
sion & of £ with domain X . A locally convex topologi-
cal linear space E 1is said to ﬁave'the extension property
if there exists a skeleton # of E with the extension
property.

It is clear that if E is a normed linear space, then
E has the extension pwoperty in Nachbin’s sense if and only
if the skeleton of E , consisting only of the unit cell in
E , has the extension property in our sense. Therefore, if a
normed linear space has the extension property in the usual
sense, then it has the extension property in our sense. On
the other hand it is obvious, that the n-dimensional Eucli-
dean space has the extension property in our sense, but if
n & 2 it has not the ususe? extension property.

The following main theorem of this paper is a generali-
zation of a theoremeof Nachbin ( [5] p. 30, theorem 1):

Theorem 1: A skeleton of a real locally convex topolo-
gical linear space has ?he extension property if and only if
it has the binary 1ntersection-property.

Corollary: A real locally convex topological linear spe-
ce é has the extension property if and only if there gxiets

a skeleton of E with the binary intersection property.
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2+ Proof of sufficiency:

Let 7 be a skeleton of E which has the binary inter-
section property. Let X be any locally convex topological .
linear space, Y a subspace of X , f a continuous linear
mapping of Y into E and ¥ (22, £, X > . Let us de~
note by § the set of all v -continuous extensions of f
partially ordered by inclusion of their graphs. By the Zorn’s
theorem there exists a maximal element o € & .+ Let 2°
be the domain of ¢ ; it is sufficient to prove that 2°=
=X .If Z° 4 X, then there exists an element roe X ~ z<
We shall show that there exists a 2 =-continuous extension
of £ with domain

z2°% = {r+ J\-ro:rez' y A 1isreall} .,
Let J¢ (£f) be the set of all R -solids of the form
(au - f(r) ,
such that r +r e « *(U), U e 7 . For every two
similar AR -solids

& U - £(r)) end @, U - £(r,)
in OL(f) we have

ro+r € ® T(U), ro+r, € u, T (U),

e, =(ry+rr) -(r, +r)e (I(all + )z (U)
and therefore
£(r)) = £(r,) = £lr; = xr,) € (Il + l(azl YU =
= (al‘u - (az'u .
This implies thot every two elements of f (f) have at
least one common point and because #¢ has the binary inter-
section property it follows that there exists a point /3 in

the common of all solids in (X (f) . Let us define an opera=
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‘

tor ¢’ from Z°° into E by the equality
g/lr+ Ar)= g(r)+ A4 .

By this definition it is evident that @’ 4s a 7 -continu-
ous extension.of f , g': g, g' $ ¢ and it is a con-
fradiction with the assumption of maxima.lity of & Thus
the sufficiency is proved.
3. T'roof of necegsity:

Let us assume thet a skeleton 92 of & loeally convex

1

topological linear space E has the extemsion property. Ve
shall show that it has the binary intersection prop.erty.

Let O be a system of 7¢ -solids whose any two simi-
lar elements have a common point. For U € & we denote by
“u

1) The collection of all elements of C(f which are si-
milar to U if this collection is not empty

2) The class of one element 'u if thave exists no ele-
ment in (L which is similar to % l

Let

by = {x€E: «U+x e X for some « f
and let fu be a fixed element in A, . Let @, be the
semi~norm induced by U € % , i.e.

QX =inf {(Al :xe AU} ;

end let Au be a function defined by the qquetions
/inf {1A1: AU +x ey f 1f x € A

\J\.“(fu)*ﬁu(x-;‘u )if xe E>Ay

Now we shall prove that the function .?Lu has the following
property

74
Au (x)

(1) Au (x) + Au (y) &2 @, (x=y) for each x, ye€ E,
- 150 -



which is equivalent with the proposition
(1) x=-y € (Au (x) + Au (y)) 4 for each x, y € E.
Let us consider the following three cases:

() xe Ay , ye Ay : By the definition of Ay for eve-

ry € > O there exist numbers A and @ such that
Au(x)+ £ >A 24, (x), AU +x € ﬂu

Ay D+ € 2@ 2@y, wl +yedy
Since every iwo elements of OZu have a non-void intersection,
we have

X=-y € (Au(x)*- Ay GNU .
() xe Ay , v € Ay : Since x-y=(x-fu)+(fu-y)
and x € Ay , fy € Ay , we obtain by (a)

x=y e[ Ay x)+ Ay ( f‘lL U * Py (fu -yu .
The convexity of X implies that

x=y €[y (x)+ Ay Cfy )+ Py (f, -9IUS=

= [, D+ 2 NIU .
() x&ay , y¢ Ay : By the definition of Ay , if
ze® ~ Ay then Ay(z) & @ (z - fy) . Hence
fy -z e Ay (3) U

and therefore A, (x) U +x and Ay (y) U +y have
the common point fu « Therefore we have

x=y € ( Ay (x)+ A, (W)U
and the proof of property (1) is closed.

Put

K, ={xeE: p, (x)=0} .,
It is easy tq show that Ay can be considered as a function
defined on the factor space E/Ny . The property (1) of
Ay , by the lemma 2 of [5] p.- 34 applied in the Banach
space E/N.u y implies the existence of a real-valued function
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with domain E having the following properties

(1) ru(x) + ru(y) g2 Py~ y) for x,y € E,

(2) lru(x) - ru(y)lf Pylx-y) for x,y € E,

(3) ru(h. x+(1-A)yl& A ru(x) + (1 -A,)ru(y)
for and such that

/\u(x) z ru(x) for sach x 6 E .

Let us consider the system a, of all R -solids
of the form /’\,u(x)u +x, where Ue® , x € E. To
prove thet O hag a non-void intersection it is e¢vidently suf-

ficiant to shew thét X, has a non-void iateysection.

Let us consider the following situations:
(a) There exists sn element x, € E such that ;'u (x) =0
for each U ¢ R .
In this case we have
Xg =X € 9 (xy = x) U c (rylxy) + r(x))U = 1y (x) %
and x, is therefore a common point of
r(x)lU +x forall x¢E snd Ue R .
(b) For every x € E there is a %U ¢ A such that ru(x) > 0.
Let § be an abstract element end
E°’=2{x+A¢ :xeE, 2 is real}.
For U é X we shall put
Al P, x) i A0,

yu\(xh}\{; )s\Pu"" i ae0 .

By means of the ssme considerations used in Nachbin ‘s lem-
ma 1 [5] p. 33 1t can be proved that @; 1s a semi-norm on
E’, We shall consider the space E’ as a locally convex topolo-
gical linesr space with a topology induced by the class
{py: U €R] of cent-norms: For U € R put
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U ={x’eE’: p) (x) & 1} .
As for each. U 72 we have EnU’' = % , it follows that E
is a subspace of E°’. ,

Let e Dbe the 1d;ht1ty mapping on E and’ ¥ the mapping
of M into the neighborhood system of zero in E’ defined by
T <'u) = U’ . It 48 clear that ¥ €7 , ¢, E°)> and the-
refore it must exist a 7 -continuous extension e  of e de=
fined on E’. Hence if x‘ex(U) = U’ then e'(x") € U eand
e’ (=-x+{)ep, (-x+{YU .If xel it is clear
that @y (=x+¢) =1 (x) ande-%x+5)=e(5)-X . There-
fore e'(¢) belongs to all R -solids of the form ru(x) U~
+x for xeE, U el . Since

Ay U+ x> ru(x)u +x,

the element e’({ )& E 1is contalned in all # -solids in &,
end the proof is complete.

Note: In the special case if E 418 #normed linear space and V(2
consists of one unit cell in E theorem 1 of this paper is equi-
valent to the cited Nachbin’s result ([5], theorem 1, p. 30).

To al characte f. convex topologic
r s_with the e si rty: .

Ir {!“_,: X € A} 1is .a system of locally convex topological
Iinear spaces, we denote by g& A E, the cartesian product of
this system with algebraical operations and topology defined as
usual.

Let 7 be a skeleton of a loeally convex topological Ii=-
neer apace and U € & . Let (©, be the semi-norm induced by
U , defined by
P X)=ant { Al :x e AU}
and N, theset {x: o (x) =0}, Since N, is a subspe-
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ce of B we can consider the factor space E/Nu , the elements
of which are sets of the form :n;‘ (x) =x + N, . Algebraic ope-
rations in E/Nu are defined obviously and the norm is defined
by the equation |l m, (x) i = @ (x) . Thus the factor space
‘becomes normed linear. Now let us consider the topological pro-
duyct

X _E/N, ‘
ueﬂE u

'l‘hen there exists a natural linear homeomorphism g of E in-
to the space X E/N defined
PACe yem u  * by

g x) ={m O} 5, € ufaf’”u .
In general & (E) 1is not necessarily equal to dnElNu .

The following lemmas will be useful,

Lemma 1. If E has the extension property, then there ex-
ists a skeleton &£ of E such that for all % € 72 the skele-
ton %u consisting of unit cell in normed linear space E/N,u
has the extension property.

Proof: Let A be a skeleton of E with the binary inter-
section property. Then, for % € 70 , #, has clearly the
binary intersection property and by theorem 1 it has the exten-
sion property.

Lepma 2. A locally convex topological linear space E with
the extension property is complete.

Proof: Let IE\ be the completion of E , i.e. a complete
locally convex topological linesr spgce containing E as a den-
se subspace. Let {x‘}‘eA be a Cauchy net in E , which is
convergent to a point R e £ . Lot @ be the continuous ex-
tension of the identity mapping e of E to /15 + Since
'e‘(x,c) =elx,) =x,, for < € A and 1linm ’o‘(x“_) =8(X) , by
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uniqueness of the limit we obtain ¥ = &(X)e E and the net
{x ‘}‘“ converges to a point of E and thus E 1is complete.

Now we are able to give a characterization of locally con-
vex spaces with the extension property.

Theorem 2, A locally convex topological lineer space has
the extension property if and only if it is linear homeomorphic
with a topological product of normed linear spaces with the usu-
al extension property.

a) Proof of sufficiency: let E =X, E, and Ec be spa-
ces with the extension property. By theroem 1 for each oc € A
there exists a skeleton & of E, with the binary inters

section property. Let 72 be, the collection of neighboukhoods of
zero in E , consisting of ‘all

U ocda U s

where U e R md U,
ber of o« € A , It is easy to see that 72 1s a skeleton in
E with the binary intersection property and therefore, by theo-

rem 1, E has the extension propertye.

= E < except for a finite num-

(Note: It is not necessary to assume that E,. are normed 1i-
nesr.)

b) Proof of necessity: Let E be a tocally convex topological
linear space with the extension property. By lemma 1 there ex-
ists a skeleton £ of E such that for each % € 72 the
normed linear space E/R“ has the usual extension property.
By lemma 2 E is complete and since @ 1is a linear homeomorph-
ic mapping @ (E) 1is also complete., To prove that

it b [ ut t chow that (E) 1’ dense 1“1“x E/

Lot {x juem € udseEMNu_ lsge_an arbitrary element and %W~



be a neighborhood of zero of the form
uw -“fnﬂf;‘ »
where
'ugi-{-ezmu,.:n-nua. & Ayf for Us;eR , J=1,
cesy ko and 'W{‘i- =E/Ny, except for U =U; , J=1,...yn.
For J =1, ..oy n choose y,‘:. in JT&: (x,‘a.); then the
collection { A7 Uy + Yuj ¢ J=1, «.cpn f 18 a set of X -
80lids any two of which are not similar, hence all #C -solids
.Aa' ﬂa' * Yy, have a common point x € E . Thus we have
.‘n’“a. (x) e .n’u’, (Aa- ﬂ;’ + ’It,') = Ay ﬂ'ua-(u;') + x,‘a.'
= ua- + tui for all j=1, ..., n . This shows
that x ¢ W + {xufu eR and therefore ¢ (E) 1is dense in

E/Nu and
g (E) .u}RE/Nu .

'lfcﬂ,

E 4s therefore linear homeomorphic with the topological product
of normed linear spaces which have the usual extension property.
Corollgry 1: A lacally convex topological linear space E

has the extension property if and only if E 4is lirear homeo~-
morphic with a topological product of normed linear spaces E
»f continuous function over extremally disconnected compsct Haus-
dorff topological spaces Q. -
This is an immediate consequence of theorem 2 and the result
of Xelley [4] p. 323,
corollary 2; T# a normed linear space E has the extension
property (in our sense), then there exiéto an equivalent norm in
E such that E with this norm has the usual extension property.
Proof: By thecrem 2 we have E = X, Bx o where £, are nor-

med linear spaces with the usual extension property. As B is
© =156 -



a normed space, A must be finite. If | n is the nora in

Eg o e put for x={x_f € E, I x4 =‘ﬁﬂx‘l¢ and

this norm has the required properties.

by

(2]

{31

[41

(5]
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