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Commentationes Mathematicae Universitatis Carolinae
6, 1 (1965)

A CATEGORICAL GENERALIZATICN OF A THEOREM OF G.BIRKHOFF ON
PRIMITIVE CLASSES OF UNIVERSAL ALGEBRAS
K. DRBOHLAV, Praha

K primitive class (cf [10]) of universal (or abstract)
algebras of some finitary type & 1s a class which consists
exactly of all algebras of type v 1in which certain equatio-
nal relestions hold true identically. More precisely, let F
be any free algebra of type T and let © be any binary
relation on F ., Let € (F, p) be the class of all alge-
bras A of type T such that for any homomorphism g : F—>A
XP1Y implies X¢g = %4 ¢ in A . Now, a primitive
cless P  of algebras of type ¥ 1is simply a class for
which there exist some F and p with P=(C(F, o). A well~-
known theorem of G. Birkhoff (cf [1]) states that a class P
of algebras of type T 1is primitive if asd anly if it con-
tains with every algebra A all its subalgebres and factor-
algebras end if it is closed under formation of cartesien pro=-
ducts.

.Categorical methods seem to be especially convenient for
investigating primitive classes of universal algebras and re=
leted questions (e.g., cf [7],[5],[11]). However, in the pre-
sent paper we try to find a categoricel generalizstion of the
Birkhoff’s theorem which would pass over the limits of catego-
ries of algebras. Really, there are categories without free
Joins which our theorem 1,15 does concern. We shall apply
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this theorem to a special class of models (relational systems),
too. On the other side, some conditions have to be supposed to
ho.ld in categories for which our theorem will be proved, but
most of them seem to be quite natural with respect to the aim
we want to attain,

After having put down the following results the author got
acquainted with the highly interesting paper [8] which seems
"-t0 be closely related (especially its section 3) to the present
work. However, the existence of zero morphisms supposed in (8]
which seems to be quite essential for the whole paper is not
supposed by us. Yet, we think that our system of conditions
(B;)i=1,2,3,4 (see 1,11) may prove useful even in some
’ cases which cannot be treated by the use of kernel-techniques.

1
1,1, Our notations do not differ essentially from those used
in [6]. € being a category, the class of all its morphisms
is denoted by the same C . The symbols obf €, epi €, momo C,
o C are used, respectively, for the class of all objects
of C s the subcategory of all epimorphisms of cC ; the subca=-
tegory of all monodorphiama o € , the subcategory of all iso-
morphisms (invertible morphisms) of € . We point out that the
composite of «: A —> B  and B: B—C  1is written as
aff (ot Bx ). )
1.2 Let C be a category, E cepi € md Mcmomo € two
subcategories. [ C, E , Ml'] s celled a picategory if and
only if both conditions below are sstisfied:
1) EAM a0 € .
(11) Any € €  ocan be written in the form o = Y(% with
VeE e weM; it Yeu -v'(g.’vith v,¥eE
and’ *) ‘«.' € M * then there exists some L € 0 L such
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that V(L= v’ (hence m = L(«.' )e

Bicategories were introduced by J.R. Isbell (cf [4]). The
present definition accepts the modificetion due to Z. Semadeni
(ef [13)). '

1,3. The following assertions hold true in a bicategory
(€, E, M'T (e (4],023]).

Let o, BeC. It «BeE then e . If
o« feM then o« e M. .

For let oo /3 € E . Following (ii) write ¢ = ot’ec”,
/3:/3'/3" with o', B'¢ E, & B%¢ M . Similarly,
let B =g’y with y'ce E, "¢ M .Now, «f =
=a'a”'p" = x'y 'y BcE and hence, by (ii),.r'ﬂ'- LE
e o . we have (T'7")B"=1, BC'y")3" = B*  ena,
ss. " e M, B"(i"y”) =1 . Hence "¢ o0 € and
B=RRek . The second part of 1,3 is proved dually.
l.4. Let [C,E, M] be a bicategory. Let us recall thst
any Pe oty C is called projective (in the sense of the
bicategory - and this will be the only cese considered in this
paper) if and only if for any o : P-»A eand any v: B A,
» € E  there exists always some f3: P— B with ac = 8% .
1,5. Let € be a category. tny Seoly € will be oolle:l
semiinitial if end only if for any A € ofy €  there exists
at least one P : S —>A ., (Initial and terminal objects are in-
troduced by J.A. Zilber (cf [14]), see also S. MacLane [9]).
1,6. For any o(,,ﬂec we write oC//3 if and only if
there exists some 7 € € with f = oc 9. Clearly oc/ﬂ
implies thet « and /3 are goinitial (they have the same
domain).

1,7. A gtar 4 in a category €  1s eny non-void family
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S = {.OFA. 5 A e A} of coinitisl morphisms <, A
-)A.x(.le/\).We often vrite ¥: A — {A, ; A e A} . The non=-
void system A of indices msy be a proper class in the sense
of the Godel-Bernays sxiomntic set theory (cf [3]). If A 1ie
a set the star ¥ and the family {A,; A € A} will be
celled gmall. If 2ll morphisms o, Of ¥ velong to some
class §  we shall write $c L .

1,8. Let ¥ be & star as in 1,7. Let ¥ ¢ C—> A, Then ¥
means the star 'f\f- {'fo(«a_ 5 A eANd -

1,9. Let J° be a ster in & category € end let y e C .
we write / 7  if and only if there exists a star J in
C with = g S.

1,10, Let us recall the definition of the product of some non-
void end smell family {AJ)- A € A} of objects of some ca=
tegory C . By this product we mean any star S: A —
-?{A_,“, A€A}in € with the following property: for any
star 7: B _’{A;," A €A} in € there exists exactly one
$:B—>A with 7= %L . anyclass A coty €
is said to be closed under formation of products if and only if
for any non-void and small family {AA s A eAN} of ob-
jects in A  there exists at least one product 4 : A —>
»{A,;AeAtwith A c A .

1.11. Bicategories [ €, E , M ] which we shsll mostly
deal with will satisfy the following four conditions:
(B4) o5 C is closed under formation of products.

(B ) For any star ¥ c¢ E  there exists slways a emall
star S c E satisfying both conditions below:

) Forany 6 e there exist some < € J~ and
te o C with 6= T L.

2) Por eny 4 ¢ J° there exist some 6 € J and
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Leisor C with > = 6¢ .
(f3g ) For any smell ster 7 E there exists some
n € E such that:

1) 7 /7T .

2) 1 » /7 end Y e E then »/7 .
(B, ) There exists e projective and semiinitial object Pe
6‘0'&;' C with the following property:
For eny A € ofy C there exist a projective and semi i-
tial object Py  end some R'e of C (which need
not be projective or semiinitial) such that:

1) There exists some ¥: R = A, P e E .

2) For any oL : R'—> Py there exist 6: AR —» P

»0

and T : P —% P, with ot = &< O ¢ .
3)1r yw: P — B, v:e\ﬂc,v,vcﬁ, v+ vy

then there exists some of : P, —» P4 with c V¥ 4 o0 @

(4 is the negation of / ),

1,12, ( By ) may be r;eplaced by a stronger condition ( 93;, )

obtained from ( 734 ) by requiring, in addition, P’ shoula

be projective and semiinitiel for all A € 0@ cC .

1,13, Conditions ( B;) i= 4,2, 3, 4 mey seem to be

rather complicated. Yet, the following interpretation will gi-

ve them a sufficiently clear sense.

Proposition. Let € be the category of all universal al=-
gebras of some fixed finitery type and of all homomorphisms )
from any such slgebra into another. Then [ €, epé € ,mono €]
is a bicategory satisfying the conditions ( 53; ) ix 1,2, 3,4
of 1,11. '

proog; For € considered above epi €, mono € respec-
tively consists exactly of all homomorphisms onto (cf [2]), in=-
Jective homomorphisms into. Thus (i) and (ii) from 1,2 are
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oleerly satisfied. (f3, ) 1s obvious ana ( By ) follows by re-
placing every 6 € S by the corresponding natural homomorphe
ism 7 of the .elgebra onto its factor-algetra, ( 3 ) may be
proved by considering J° as to consist of natural homomorph-
isms. The intersection of the corresponding congruence-rele-
tions is a congruence relation which gives & natural homomorph-
"ism M  with both properties 1) and 2) required. The msain dif-
~ficu.‘l‘ty is to brove ( 34, ). It is easy to prove that projective
and semiinitisl objects in [ C,epé €, mono €] are exact-
ly all free algebras of the given type. For any non-void set X
let F(X) mean the free algebra in € having X for the
set of free generators. Put P = F(X) with ecard X= &', -
Then, for sny A 6 oy € , put A = FCY) with

canadl Y a &, 80 large that there exists some 5: Py A,
S eE.FPor P, letus take P = F(Z) with two free
generators Z = {X4 , X3 } . Since 1) in ( G, ) is already
satisfied let us prove 2). Suppose o« : F(Z) - F(Y) . Then
there is obviously a finite subset Y'c Y with X% F(Y’)
(ss the type is finitary), hence [ F(Z)1%c F(Y') . Taking
some X'c X  with card X' = card ¥’ and bijections

6: Y2 X', v~ ¢™": X'> ¥’ we extend them in any way
to homomorphiems 6: F(Y)=> F(X), T: F(X) = F(Y). Now,
it is essy to see that o« = ot 6 = . Finally, let us prove
3). Suppoee ¥y : F(¥)—=>B, v:F(Y)>C,y, Ve E ,
with congruence-relations Py amd @, on F(Y). Let
Y Y. Ten p, ¢ Py and hence we have two elements
t10fg € F(Y) with f; o, f;, and f, (non p,, )f, . There
is cleerly a homomorphism o : F(Z ) —» F(Y) with 'z.f-
-41 ,Z‘:-ﬂ e Now, XV y = x ¥y for some y: C — B
'mld give x‘:? - z;‘"” because of z:o - z;°" .-
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It would follow £,Y¥ = £¥  ana 4 @, #,  in contradic-
tion to our hypothesis. Hence ay 7 « ¥ and our proposi-
tion is proved. (Notice that we have actuslly proved (.B',. )).
1,14. Let [ C, E, M ] be a bicategory satisfying
(%;) 1=1,2,3,4 . ©Let P be any of its projective
and semiinitisl objects. Let 7 : P> &, 7 € E . Then
C(P,7n) will mean the class of all A € off C such
thet for any 2% : P—=> A there 1s always 7 /7% . A
class P c oty C will be called primitive if and only .
if there exist some P and 7 with P= C(P,7) -

It is clear that in the case of the bic;ategory of all uni-
versal algebras of some fixed type (see 1,13) this categori-
cal definition of a primitive class is equivalent to the usu~ -
al one,

1,15. Theorem: Let the bicategory [C, E, M ] satisfy
(B;) i=1,2,3,4 from 1,11 and let P #+ & be any
cless of its objects. Then P  ig primitive if and only if
the follow;dng three conditions ( P; ) i=1,2,3 are
satisfied:

(P4)If A : A—B,ueM, BeP then A€ P.
(P »: A—>B, veE, AeP then Be P.
(Py) P 1s closed under formation of products.

Proof: Let P ve primitive, P = C(P,7), n€¢E,
7:P>Q. let w:A—8, weM, BsP. ye have
toprove AeP. Let & : PoA., Then Yhesi : P—> B
end, 38 BeP, N /D and P =7, for some
a3 G — B . Consider decompositions 2} = ' 9", Vb =
- 3y 9 with ¥, b e E, 8" 8 ¢ M . Then, vy
(11), there exists some L € - € with »'= 7 %'c .
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Hence 7 /¥', 7/, AeP and ( Py ) ie proved. Let
V:iA—-»B, ve E, Ae P . Wehave to prove B e P.
Let ¥%: P—> B . As P is projective (otherwise € (P,7)
* 18 not defined, see 1,14) we have ¥ = 2%, v for some
d :P->A . since Ae P wehawe /%, end /.
" Hence ( B ) is proved. Let {A, ; A €A} be anon-void and
small family of objects in P, By (J3,) there exists its pro-
duct 9:5——>{AA;J\.€/\§ in € . In order to prove
( Py) it is sufficient to show that S e P . 1Letih: P—> S.
Then 7 /P ¥ md ¥ = 7T  for some star J .. Sin-
ce I 18 product we heve J = 3 for some ¥ . It fol-
lows VY = ” v and, again by ¢  being product,
WV =7y . Hnce /¥, SeP and (P ) is pro-
ved.

Suppose now that P+ g2 is any class of objects satis~-
fying (P;) 1 =1,2,3 . We have to prove that P is primi-
tive. .

First take any semiinitial end projective object P in
our bicategory and consider the ster Y ofall PekE with
W:P—>A,AeP. Because of P+ J, (i1) and (P ) the-
re exists really at leesst ome 1 with the above property.
By (B,) we £ind a small star J  with properties mentioned
in (B,) and for this & we find 7 : P— @ es requi-
red in (B,). From 7 /7 , (i1) and ( P;) it follows essily
that .

(x) forany B:P—> B with BeP it is always? /3.
Hence Pc C (P, 7N ) . We shall prove thst
(p) K eP. '

Let the star 7 have the form Iz P —» {B,; A € A}

with By e P forall A eA.let £: X>{B;AecA}
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be the product of the femily {B,; A e A} . By (P, )
we may suppose that X € P . as % /7 we have T =
= '7{ 7’ for some star J ' eand, as X 1is the product,
T'= X for some ¢ . We consider some decomposition
7v=9'y" with y’e¢ E  and p"¢ M . Then we heve
T=7y'y"% . since 7y’e E and 7 y'/T 1t
follows by (B;) thet 7 y'/7  end 77 = 7% y‘s¢  for
some 2¢ . We have then 1 = 9 3¢  and, using (1) and the
second assertion of 1,3, we conclude 7"5 ™ and y =
=y'y"¢eM .But y: @ > X and Xe P, hence by
(P) @ e P . Thus (f3) 1s proved.

We have elready proved Pc C (P, 7 ) . Now, in
place of an arbitrary _P. we take the semiinitisl and pro-
Jective object P from (f3,). Again, we find 7 : P> @
Just in the same way @8 7  was found for P end, again
by (3), we heve B € P . There is Pc C(P,n ), too.
But for this specisl P quite P= C(P,7 ) is true.
To prove it suppose eny A € C (P, 77 ) . We went to
show that A e P . Take P anda P/ by (B,). -
gain, considering P, instead of P we find 7, : B —>
— @,  in the same way es 7 was found for P and, &=
gain, QA e P . sy (B4) 1) there exists some % e E with
B PA —> A . We shall prove that Na /25 .

Suppose that %), # 2% . Then, by (53,) 3), we can
find some ot : B’ — P, with «7), # a1 . To this

« wecanfind 6: B —->P, 2:P-—> PR such that
x =6 (see (7B,),2)). As 6 € P we have, by
(X), M4 /67 end 67 =7, for some 9¢ . As
AeC(P,m) and =4: P> A" we have 7 /7 2%
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end ¥ = 7V, forsome 8, . TS A Ve 6z S =

=Kk 0Ny =oy,.0ed, ad o7, /x B in contradiction

to our hypothesis. Hence 7, /7% and ¥ = Va ¥, for

some 4, . o

Since 2% € E 1t follows by the first assertion of 1,3
that 1’1 e E . But'zg_:aA—-»A and @;‘ € P . Hence by

(P,) we get A e P . oOur theorem is proved.

1,16. Repark. Notice that if P+ @ ie a primitive class

of objects of a bicategory [C , E , M ]  satisfying

(B;) i«1,2,3,4 then it can be written in the form
P=C(P,7) where P  is that projective and semi-
initial object which is introduced in (7, ).

2.
This section is intended to show one application more of
the preceding investigestions. It deals with a specisal class

of models which we call A -systems. The mein purpose of it
is not to investigate models in general but to give some fur-
ther illustration of the ideas of section 1.

2.1. Consider the covarient functor Hom (I, X ) of the ca-
tegory of all sets to itself ( [ being fixed). It assignes
toevery ¥ : X > Y a unique Hom (I, X)~» Hom (1,Y)

denoted by 1% . It is clear thet for 2% : X—> ¥  and

V:Y;?Z we have always Dy = By -

242. An R -gystem of type I 1s any system A of the form
A = <X,1,U) wnere X, !, 2 are non-void sets and
Uec Hm (1,X).B= <Y, !, ) being some second
R -system, the mapping ¥ : X — ¥ will be called a

homomorphigm of A into J3  (abbreviated by 28 : A - B )
ifedonlyst U D c ¥V . 1. uUB=v, &4 wl

' be called gtropg. ‘
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2.3. It is clear that all fR -systems of some fixed type I
and all homomorphisms of one R -gystem into another form &
category. We shall denote it by &; . Let E,M  mean, res-
pectively, the subcategory of all strong homomorphisms onto,
the subcategory of all injective homomorphisms. It is easy to
prove that [(,, E, M ] is a bicategory.

244+ The theory of R -gystems is much similar to the theory
of universal algebras. We mention some most important facts
needed below,

2.5. Iet A =x<X,/, U > be an R -system. We define, for
any equivalence-relation 5. on A, a new R -system Az-'f
= <Xy |, Uy > by the following: Xg is the factor-set
o¢ X by = ; the natural mepping 7 : X —> Xg (with
XE X T for all x e X ) induces T : Hom (1, X)—>
> Hm (l,Xg ); we put Ug = U T . Hence v: A —>Ag
is & homomorphism (called paturel) and * € E . Ag is
called the factor- R =-gystem of A with respect to = ._
2,6, Let 6: A—-»B, 6 E . Let = , ¥ be, rea-
pectively, the equivalence-relstion on X , the natural ho-
momorphism ¥ : A —» Ag  corresponding to 6 (hence

v =6.6-1 ). Then, there is obviously an isomorphism
L:Ag—>B with 6= 2 (L . It is clear thet in the bi-
category [ C;, E, M 3]  the condition (3B, ) from 1,11
holds true. Really, we need only to replace every & & 4 of
the given star :f c E by the corresponding nstural ho=-
momorphism 7 € E .

2.7+ The condition (By ) for [ C;, E, M J 1s also ea-
sy to be proved. First of all, we may suppose that the small
star T = {7,; A €A}c E consists of natural ho-
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momorphisms <, , each éorresponding to some equivalence-re-
lation &, . Then X = ;Q =, s an equivalence-re.ation
and the natural homomorphism 7 c?rresponding to = has
both proparties required in ( B, ).
2.8 Let {A,; A €A} be asmall and non-void family of ob-
jects in €, Ap =< X, , !, %, > forall A e A . Define
X and U by cartesian products X -.AI’/-\XA ’ ?L-AE U, -
Observing that each 1 € U may be considered as a mapping
of I 4nto X we obtain en R -system A=< X, |, UD.It is
easy tn prove that the stsr of projections 7’3. : A—> A.ﬂ. is
the categorical product of the femily {A, ; A € A7 . Hence E
the condition ( B, ) is proved for [ CI s, E,M1].
2.9. Consider a non-void set S . Forany 4« S let 5 be
the mapping of I into I x S defined by the formila
is=<i,»> forall iel. Let 5 mean the set of
all 4 with 4 € 5, Then the system F;:(lxs, 1,8 > 1s
an R -system. More general, let D  be any set with D n
A (1 >x5)= &. We denote by Fs,.'b the R =-system FS,D =
={(Ix8)uDd,!Hs >-
2410, The system F_,’ » from 2,9 has the following property:
A=<X,],U> beingany R -systemand yr: S — X any
. mapping, there exists alyaya a homomorphism o€ : Fs,, - A
vith the restriction (X /S )= ¥ . If oy : Fgp > A
is another such homomorphism then (o /I xS )= (ex;/] xS5).
Really, define o by i,4dct=i(4 ¥) forall iel
end all A €S amd (c/D): D—> X in any way. Then,
8 i(gX)a (il mli, Hdx = i(2 ¥) foar all
i€l, whave pX = 4y and (x/S) = Yy . Hence
®:fy—> A  1s a honomorphism. For any ox,: Fg ; — A
with (&, /S J)aym(x/S) whave i(axX ) =ilax,)
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and, using the above equations, (1,4 >oc = <I,4>C, for
all 1e I end all A € S . Notice that if, in addi-
tion, some y : D— X  1s given, then there exists a uni-
ue x:f,>A with&x/S)=y eand(@/D)=yg -
2,11l. From 2,10 it follows casily that any Fg p is semi-
initial in [ CI , E, M 1. Moreover, any F, , is projec-
tive in L[ C;, E,™M 1. Reslly, let 3: Fs,p"’B’:(y’ >
and V:A=<X,/,U>>B, VeE. As UV = U there
existe always some ¥ : S > U with (/T/é )= 1}’17 . Again,
as X» = Y, there exists some y: D—+X with (3/D)=
= y ¥ . Now, following 2,10, there exists some oc: Fg > A
with (/8 ) =y and(oc/.D)::;[- To prove 3 =< » ,
it is sufficient to show thst (B3/S)=(X»/S) and (/D)=
=(v /D) ., But these assertions sre both clearly satisfied
by the above construction.
2,12, Let A=< X, |, %> be given. Then there exist always
some Fgp endsome B:F, —>A with ¥ekE.
Really, there are clearly sets S, D with some surjections
(meppings onto) ¥ : S = %L, 1 :D~—*X ~ mawth Dn
A(1>xS)= g . Frinding to ¥ and g emoc:fi.’p—,A
by 2,10 we see immedistely that oc € E.
2,13. Propogition, The bicategory [ C;, E, M ] (for defini-
tion see 2,3) satisfies the conditions (B;) i=1,2,3, 4
from 1,11,

Rrgoz.: (8;) i=1,2,3 were proved in 2,8, 2,6 and
2,7. For to prove (15,'_) pt P = Fg p with S =
={%, % , P55 4, ¢ andDm{d;;d,} ana P = Fr e
with T={t;, t, } end E = {€1, €, 3 foreach Ae
so&jd.‘. By 2,12, £ind to any Aco&;‘tr some
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A FSA,D;-?A-,'ﬁtE and put P, = F;A ) Da Hence,
by 2,11, P and F  are semiinitial and projective. As 1)
in (8B,) is slrBady setisfied, let us prove 2). Let o : B —
- R . Let L be the set consisting of £, € , £, o€ end of
all A, € S,  such thet e ot = <1, 4,> or g o = <L, 8,
for some i € I. Let K be the set of all .k € Dy  with
€.,°L=‘k or ¢, =k .Hence L ¢ S, , KecDy and,

Now, we can clearly find mappings
Y, éﬁ""’é »¥2: 525y, %1:Da—>D, 12:D—>Da
with (9, ¥, /L )=1  end (x, X, /K)=1 (1 is the
identity mapping). Following 2,10, we cen find homomorphisms
6:F —>P am 2x:P— Py with(6/S))=% >
(6/Dy )= %19 (T/S )=y, (*/D)= Y2 + For to prove that
ok =oc 6 it is sufficient to prove (/T )= (x0T /T)
and (/E)=(x 67z /E) . Butforamy t €T we
have tx 6T = (X V6T = (EX)Y, Y, =t x becau-
seof tk el . 1f ecE anda exeD, then exekK
anl Lo 6T = € Y 2 =eX.If € E eandex ={i,s,>
for some i €l amd some 4, € S, then Ay € L,
x0T = (14, )67 = L[4, 6F]eily 4,9, ]1=i2, « ca .Hence
(x /E)=(x6%/E ) and 2) 1s proyed.

Finslly, to prove 3) in (%,) consider 1 : By —>8,
»:P=>C, v, ek and » 7 % . Following 2,6 we
may obviously suppose that y and 2) are natural homomorph-
isms, B = (PR )y, C=C(R), for some equivalence-rele-
tions w end H on the set M= (I%S,VYuDy- P F Yy
implies H ¢ Y and hence there exist some m,, m, € M
with m, Hm, end m,(mon Yy IM, . Now, it 1e

34 -



sufficient to show that there exist some n,,nchg{IaT)uE
and some homomorphism o : PA' - P with m o = m, eand
m,o = m, . Reslly, it follows then that nyoc Y wn,or ¥ and
m,xy # M, ey sothet > 7 oy . Essentially, the-
re are three cases to be considered. First, whenm, =<-il, 4,'4 2
m,=<i", % > for some i’,i”e¢ I, 44, 44 € S, - Then
put my =<i%t,>, M, =(i’ T, > end ot: B'—» P choose
so thet t, X = 4, 5 t, X = %4 . Second, when m, =
= (i’ 4;;_, m, € Dy . Then put n,:(i',t., >, m, = € end:
o« choose so thet t, < = 1; ) €, = m, . Third, when
m,,m, € D, . Then clearly Mmy=€,, my=¢€, eand
X =My, €oL=n, . Herewith our proposition is proved.
(Notice that we have actually proved ( 73;'_) (see 1,12).)
3.

3,1. Consider a bicategorx Le, E,M] and let P2
be any class of objects in &€ satisfying conditions (%),
i=1,2 from 1,15. Let €’ be the full subcategory ot €
with o8j C'= P. put E'= EAC', M’=sMAC’. Then
[C',E,M'] 1s a bicategory.
3,2. Theorem: Let [ C, E, M ] be a bicategory sstisfying
the conditions (B) (B,) (B,) (B,). Let P+ Z be any
primitive class of objects of [ C,E,M ]. Then the bicatego-
ry [C', E, M’] 5 corresponding to [P in the sense of
3,1, satisfies the seme conditions (B,) (73,) (3,) (3;) .

Proof: (B,) is satisfied for [ C', E’, IM’J by theorem
1,15, (8,) end (f3,) hold true in [ C’, E’,IM’] es they
hold true in [ €, E,M ] end, again, because of theorem
1,15, Thus we have only to prove (IB;)'.

In the proof of theorem 1,15 & method has been described
of how to get te any projective and semiinitiasl object P
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some ‘q‘:'ﬁ—,a, ‘TZ'IE sstisfying (o< ) and ().
By (%)) which is supposed to hold in [ &, E, M ] we heve
some fixed P and to any A e of; € sowe P, and

P/ + By the above method £ind 7 : P> @, 74 R—>d,
7yt Pl —> 8 so thet by (3) @,8,,R, ¢ P=0o% C'.
We claim that ( B) ) is satisfied for CC',E',M’] with
these @, G, Q4 (in place of P, Py, P in the
wording of (3.)), for all A€ oty C'.

Really, @ is semiinitial in €’ by (). @ is

projective in [ C', E’, M’ ] vecsuse P 1is projective

in [C,E,M] and 7€ E. sinilerlv, Q4 emd 4,
are projective ond semiinitisl in L[ €', E’, M ], For any
AeolyC’ there exists alwaye some ¥: @, > A, e E -
Really, we have 2%': P, —> A for some ¥’ ¢ E
by (), D= t, F: 6, > A .
firet assertion of 1,3, we get ¥ € E

ad,
Now, using the

and, of course,

" e E’. Hence 1) in ( B]) is proved. Let ot : & —» @, -

Ra e; is projective, there exists some o’ FX —~ PA with

x, = 74 % . Now, by (B,) for [C,E,MT we have

«'= x'6’z’ for some q": R —> P, z’: P> A -

By (o), 7, /0"7 and thus 6'7 = 9,6 for some

6: Qa-> @ . similerly, 7 /', em z’yA =77 for

some T: Q >Ry - Now, = £, = <’62'7\=xCYT=

=7, 6% =76 hence o mox 6T . Thus, 2) in (B)

is proved. Finally, let us have », ¢ E’, 3 :8,—> B,

»:Q,—C,» 7y . Then clearly 7, 7 9, ¥ . By (B])

for (€, E,M] there exists some «': B'— P, with
x'n Y FxX', ¥ . By (x) we have 74 /x’7, e
<", =7c forsome oc: By > @, . Now, x» /oty
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would imply aec» /74t ¥ and 9uv /xg, ¥ 10
contreiiction to the above result. Hence oc» Fy  end 3)
in (33;) is proved.
2,3. As the bicategories of propositions 1,13 and 2,13 satisfy
conditzons (8,)(53,)(B,)( B ) these conditions are satis-
fied by bicategories corresponding to primitive classes of u-
niversal algebras or R -gystems.

4.

In this section we want to indicate some relations bet-
ween the present investigations and some of those ideas which
concern the concept of independent sets in the sense of J.
Schmidt (cf [12])). Let X be any subset of en algebra A

B being any algebra isotypic to A, X 1s called B -in-
dependent if and only if eny mepping ¢ : X —» B can be
2xtended to a homomorphism ¢ : ¥ (X) — B where
€L (X) means the closure of X in A . We went to f£ind
a categorical equivalent to this concept (and to some others)
and we guess the present way may turn out to be an appropria-
te one.

4,1. et [ C,E,M ] ena [C',E’, M’] be two bicatego-
ries and let the first one satisfy the conditions (f3;) i «
=1,2,3,4 from 1,11, Condder a covariant functor F : C—>
~» €’ ana suppose that

(F)1If e E  then F(x)e E’ .

(R)If o« € M  then F(x)e M’.

(F,) If the ster S={m;AeA}:S2{A; LA} In C 16
the product of {A;; A € A} <then the star F(Y¥)=
«{F(m);AeA}: F(S)>{F(A); A8A} 1n C’' 1s the
product of {F(A,); Ae A} . j
442 Assume 4,1 and Ae ol € . Let X be aprojective
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object in [C', E',M’'] and let (w: X —> F(A). Then we
shell say that A is generated by (% if and only if the
following two conditions hold:
(G,)1f Beoy €, x,B: A8, u Fa) = F(B) then
<=3 .
(G,) If B,CaoiC,x:A>B,0e:C—>B,0e 6 M, Flex)=AF(oe)
for some A : X —» F(C) then o = ot  2¢ for some

«, : A—>C .
4.3, Assume 4,1 and 4,2, Especially, let A be generated
by : X—> F(A). Let Beofy C . Then e will
be called B -independent if and only if for any 2% : X —
— F(B) there exists always some 2% : A — B such
that w F(F) = 2% ., It is cleer that ¥ 1s then u-
niquely determined by 2* as one can see from (G, ). Denote
by nd the class of all B such that « is

B -—i-nd—e;endent. :

4:4. Theorem: Assume 4,1 and 4,2. Especislly, let A be
gererated by « : X —=» F(A) . Then the class a‘nal(a.
is primitive provided that it is non-void.

Broof: Theorem 1,15 shows that assuming ind « % & we
need only to prove that (B ) 1=1,2,3 are satisfied for
ind -

Suppose B eind «, 2 :C—B, ¢ e M and let
us show that Ce ind a . Suppose b: X = F(C) .

Then % Flae): X — F(B) and, as Be ond v , we
have % F(ee ) =  F (o) for some o« : A > B .
Now, by (G, ), we have oc = ot, ¢ . for some oc,: A—> C.

Thus % F(2e) = w F(x,)F(ae) end, as F(ee)e M',
it follows P = w F(x,) . Hence  1s C -inde-
pendent end C € ind @ . (B) is proved.



Suppose againBemd ., v: B+ C, ve E and let
us show that Cet'md(u— . Suppose P : X—=> F(C). As X
is projective and F (v )e E’ we have 28 = & F (v )
for some ¥ : X—> F(B) . As Be imd there

must exist some q—}: :A=> B with 4 = F'(‘@;) .

Now,.E,v‘:A-"'"C and  (w F(F ») =
= FOGRL,IF(W)AD F(») = 1% . Hence  is ( -inde-
pendent and C e ind o . (73 ) is proved.

Finally, let B, € nd « for all A e A and
let the star F= {M, ;A €A} :S5S>{B; A eA} be the
product of this system. We shell show that S € wnd .
Suppose 1 : X —» F(S) . rthen PF(m ) X—> FcB,)
and as Bacimd(u. we have % F(my )=t F(P, ) for
some @ A~ B, . As ¥ is the product we have °, =
=y (A€ A) for some w: A—> 5 ., Thus uF(y)F(P)=
= 3F(S) and, as FC(Y¥Y) 1g product by ( Fy ), it turns
out that FGy) = 248 . Hence, o is S -independent
and Se ind . (B) is proved.

4,5. Let [ €, E,M ] be any bicategory satisfying (7B;)
i=1,2,3,4% , and let P+ g be any primitive class
of its objects. Hence we may write P= C (P, 7 )  for so-
me projective object P . Taking for F  the identity fun=-
ctor F:[C,E',MJ—?[C,E,M] 5 then, with res-
pect to F , G  is generated by m: P—=>@ . For (6)
is cleer and ( G,) follows easily from (ii) in 1,2. Now, one
cen easily see that tnd 7 = C(P,7 ) = P . Hence every
primitive class P & #  of objects in [ L ,E ,M ] cen
be obtained in the way of theorem 4,4 when choosing a suitable
functor F . :
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