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Commentatlones Mathematlcae Universitatls Carolinae 

6, 1 (1965) 

A CATEGORICAL GENERALIZATICH OP A THEOREM OP G.BIHKHOFP ON 

PRIMITIVE CLASSES OP UNIVERSAL ALGEBRAS 

K. DRBOHLAV, Praha 

A primitive class (cf [10]) of universal (or abstract) 

algebras of some finitary type t is a class which consists 

exactly of all algebras of type x in which certain equatio-

nal relations hold true identically. More precisely, let F 

be any free algebra of type X and let p be any binary 

relation on F . Let (C ( F , p ) be the class of all alge

bras A of type X such that for any homomorphism y : F'.—•A 

X j> 10 implies X Cf • y . cf in A . Now, a primitive 

class P of algebras of type X is simply a class for 

which there exist some F and p with IP* £CF, p). A well-

known theorem of G. Birkhoff (cf [l]) states that a class P 

of algebras of type X is primitive if aftf anly if it con

tains with every algebra A all its subalgebraa and factor-

algebras and if it is closed under formation of cartesian pro

ducts. 

... Categorical methods seem to be especially convenient for 

investigating primitive classes of universal algebras and re

lated questions (e.g., cf C7j,[5J,fll]). However, in the pre

sent paper we try to find a categorical generalization of the 

Birkhoff's theorem which would pass over the limits of catego

ries of algebras. Really, there are categories without free 

joins which our theorem 1,15 does concern. We shall apply 
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thla theorem to a apecial olasa of modela (relational systems), 

too* On the other aide, aome conditions have to be supposed to 

hold In categories for which our theorem will be proved, but 

most of them seem to be quite natural with respect to the aim 

wa want to attain. 

After having put down the following results the author got 

acquainted with the highly interesting paper [8] which seems 

to be closely related (especially its section 3) to the present 

work* Howevert the existence of zero morphisms supposed in £8] 

which seems to be quite essential for the whole paper la not 

supposed by us* Yet, we think that our system of conditions 

(Si{) i • 4t l t $t *t (see 1,11) may prove useful even in some 

cases which cannot be treated by the uae of kernel-techniques. 

1 

1*1. Our notations do not differ essentially from those used 

In [6]* C being-a category, the class of all its morphisms 

is denoted by the same C • The symbols 0(9 C$ epi C, mono C, 

4*0 C are used, respectively, for the class of all objects 

of C , the subcategory of all eplmorphlsms of £ , the subca

tegory of all monomorphisms of C f the subcategory of all iso

morphisms (lnvertible morphisms) of C , We point out that the 

composite of at : A —¥ h and y3: B —* C is written as 

oC/3 (not /3 <** ). 

1.2« Let C be a category. £ c tfii C and M c mono C two 

subcategories* [ C f E , Ml J Is called a bicategoriv If and 

only If both conditions below are satisfied: 

(I) E A H m 4*0 C . 

(II) Any cc e C can be written In the form ot • !>("> with 

l ) e E and (14 c M j If T>(U. - V'QAS with %), v ' e E 

and A4, (fx! € M * than there exists soma 4. € i*o C such 
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that <%) i s v ' (hence / tt * LAI' ) . 

Bicategories were introduced by J.H. l a b e l l (cf [4j)» The 

present def in i t ion accepts the modification due to Z. Semadeni 

(cf [13] ) . 

1n3> The following assertions hold true in a bicategory 

[ C , E , JMI ] (cf [ 4 ] f f l 3 ] ) . 

Let oc , (i e C • I f oC /» c E then /S e E . I f 

oc /3 € Ml then at e Ml . 

For l e t oc/3 € E . Following ( i i ) write <c » oc'oc**, 

/I m fl>§ fl" with oc', / 3 ' £ £ , *c" /3*6 H . Similarly-

let <*,"/?' « ^ ' r * with y ' ^ -£, r ' « M .NOW, C*,4 -

« <*,'*,"fi'fl" m cc'r'r"/i"eE and hence, by ( i i ) f ' j r ? 8 i r - t € 

* t*o £ . We have <zY')fl"~1, /3'Vf V * > / * ' ' ' fi* * * i 

a s J ^ e W , / J " a V # ) - ^ • Hence/3"e ^ o C an* 

/3 « / 3 ' / I * c £ • The second part of 1,3 i s proved dual ly. 

1.4 . Let C £ , E , tH J be a bicategory. Let us reca l l that 

any P e obj C i s cal led projective ( in the sense of the 

bicategory - and th i s wi l l be the only case considered in th ia 

paper) i f and only i f for any at, s P-* A and any y) : B —* A , 

y> 6 JE there e x i s t s always some fi : P—* 3 with oc m fit) . 

l . j j . Let £ be a category. Any S e ofy C w i l l be cal led 

semilni t ia l i f and only i f for any A 6 ofy £ there e x i s t s 

at l eas t one $ : S—>A . ( I n i t i a l and terminal objects are In

troduced by J.A* Zilber (cf [ 1 4 ] ) , see a lso S. MacLane [9 ] )« 

1.6. For any oC » fi € € we write cC /fi i f and only i f 

there e x i s t s some y € C with fl m oC tf. Clearly cc //I 

implies that oc and fl are c o i n i t i a l (they have the same 

domain)* 

1.7. A s tar tf in a category C i s any non-void family 
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tf * {<XX % X e A | of c o i n i t i a l morphisms aCx : A -> 

«->AAfll€ A ).We often write 1/ : A —* * C ^ > A « A } * The non-

void sy3tem A of ind ices mey be a proper claa3 in the sense 

of the Godel-Bernays axiomatic set theory (cf [ 3 ] ) . If A i s 

a set the star If and the family {A^ ; A fi A J wi l l be 

cal led small. If a l l morphisms dix of tf belong to some 

c las s L we sha l l write *f c L « 

1.8> Let tf be a s tar aa in 1,7 . Let f : C -> A . Then y ^ 

means the s tar f $ m { f <X*X > X c A } . 

1>9- Let (F be a s tar in a category C and l e t 7* e C . 

We write *Y / f i f and only i f there e x i s t s a star ^ in 

c with r̂ « x y . 
1.10. Let us reca l l the def in i t ion of the product of some non-

void and small family {Ax j X e A} of objects of some ca

tegory C . By t h i s product we mean any s tar i f : A —-> 

—>*CÂ *, .X€ A } in C with the following property: for any 

atar T: b ~~*{A ) A e A } in C there e x i s t s exactly one 

t> : B - > A with T~ <& tf . Any c lass A cz o£* <T 

i s 8aid to be c losed under formation of producta i f and only i f 

for any non-void and amall family {A* j A € A J of ob-

j ec t s in A there e x i s t s at l eas t one product ^ : A —• 

- • { A ^ A c A f with A e A . 

1 .11 . Bicategories [ <C , E , Ml ] which we sha l l mostly 

deal with w i l l s a t i s f y the following four conditions: 

( &f ) ofyj C i s closed under formation of products* 

( &2 ) F o r azW s ' t a r ^ c: £ there e x i s t s always a small 

atar f c E sat i s fy ing both conditions below: 

1) For any 6* c tf there ex i s t some t 6 £T* and 

i e W - C with ff» r t • 

2) For any T m (T there ex i s t some 6~ 6 »/ and 
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L € iter C with tr •» (T(. • 

( # 3 ) For any amall star fT c. £ there e x i s t s some 

1) € E such t h a t : 

1) ?2 /T . 

2) I f >>/<T and y) e E then V /*£ • 

(43^. ) There e x i s t s a p ro jec t ive and s e m i i n i t i a l object P e 

€* o^* C with the following proper ty : 

For any A 6 oig C the re ex ia t a p ro jec t ive and aemi i -

t i a l object f̂  and some P^ € ofy C (which need 

not be p ro jec t ive or s e m i i n i t i a l ) such t h a t : 

1) There ex i s t9 3ome i? : PA —* A , o> 6 E • 

2) For any oC : %' ~+ PA there ex ia t 6T: PA - > P 

and t : P —* ^ with & ** cC 0 f . 

3) i f y".PA-+b, V : P A ^ c , f , ^ E , v + r 

then there exista 9ome oC : PA —•» f^ with & \> -/" c?c y 

( <+* i9 the negation of / ). 

1.12. ( #/j. ) may be replaced by a stronger condition ( # i ) 

obtained from ( (Jitf. ) by requiring, in addition, P^ should 

be projective and semiinitial for all A e otg (T • 

I.lj# Conditions ( &£ ) i « 4f 29 3, h- may aeem to be 

rather complicated. Yet, the following interpretation will gi

ve them a sufficiently clear sense. 

Proposition. Let C be the category of all universal al

gebras of some fixed finitary type and of all homomorphisma 

from any auch algebra into another. Then C C , *{U <t > f*nay& C j 

is a bicategory satisfying the conditiona ( Si£ ) im 1, Z, $,*t 

of 1,11. 

£r£o£^For C considered above efu C} mwno C respec

tively consists exactly of all homomorphisms onto (cf [2})t in

ject ive homomorphisma into. Thus (i) and (li) from 1,2 are 
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clearly satisfied* ( &* ) i s obvious and ( 3g ) follows by re

placing every C € & by the corresponding natural homomorph-

ism t of the algebra onto i t s factor-algebra* ( 3 j ) may be 

proved by considering (T as to consist of natural homomorph-

isma. The intersection of the corresponding congruence-rela

tions i s a congruence relation which gives a* natural homomorph-

' ism 49 with both properties 1) and 2) required. The main dif

ficulty i s to prove ( Si^ ) . It i s ea8y to prove that projective 

and semiinitial objects in C C , *ff* C , <mArur € 3 are exact

ly a l l free algebras of the given type* For any non-void set X 

let F(K) mean the free algebra in C having X for the 

set of free generators. Put P « F(X) with cxutd X- &0 • 

Then, for any A € o6j C , put ?A * F(Y) with 

cautaL y > *ff0 so large that there exists some n)>: ?A~*A} 

i ) c E . For ?A let us take r*' » FCZ ) with two free 

generators Z m { x 1 , x 2 } • Since 1) in ( 33^ ) is already 

satisfied let us prove 2). Suppose a t ; F C Z ) — > F C y ) . Then 

there i s obviously a finite subset Y' c Y with 36*c F(Y') 

(as the type ia finitary), hence CFCZ)J0Cc FCY$) . Taking 

some X' c X with uwt X* « c**cL Y' and bisections 

ff * y —* X t X » <r~ -.• X'-* y ' we extend them in any way 

to homomorphisme 6T-. FCV) -» FCX), tr: FCX) - * F(Y) . Now, 

i t i s easy to see that «C« <x C r • Finally, let us prove 

3). Suppose y : F(Y) -* B>7 V : F W - * C , IfO V € £ , 

with congruence-relations fy and p^ on FCy) . Let 

V -/• V • Then jPp £ Py fi-nd hence we have two elements 

*ah « F f y > "i*** *t f>>> *i *«* *i ft«^t f y )fj . There 

i s clearly a homomorphism oc : FC21) —> P ( y ) with 2sf •» 

• *l > *1 • fi • Now, <* %> y » oc Y for some ^ * C —• B 

would gl*« *.. "" xx because of a.̂  - -^ . 
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It would follow f^f m f^ and 1, f r ^ in contradic

tion to our hypotheais. Hence ec\> f « Y and our proposi

tion is proved. (Notice that we have actually proved (&'f. ))• 

1.14. Let [ C , E , M ] be a bicategory satisfying 

(&i ) i - 4 , 2., 3 , 4- . Let P be any of its projective 

and semiinitial objects. Let ̂  : P-* fl , % 6 £ - Then 

C f P, ̂ 2 ) will mean the class of all A e <r^' C such 

that for any tJ» ; P—* A there is always ^ ̂ ^ # A 

claas P c ot$ C will be called primitive if and only 

if there exist some P and ^ with P - € CPf^ ) * 

It is clear that in the case of the bicategory of all uni

versal algebras of some fixed type (see 1,13) this categori

cal definition of a primitive class is equivalent to the usu

al one. 

1.15. Theorem; Let the bicategory [ € , E , H J sstisfy 

( $>i ) i * 4, 1, 3, *t from 1,11 and let P * ^ be any 

class of its objects. Then P is primitive if and only if 

the following three conditions ( ?i ) i » 1, 2. f 3 are 

satisfied: 

( P-i ) If (it, \ A -* & , (U e Ml, B € P then A e P • 

( Pj>) If V : A -+ B , x> e £ , A c P then B € P . 

( Pj ) P i s closed under formation of products. 

£roo£: Let P be primitive, P • CCP^) , q e E > 

I J J P - » f l . W t ^ : A - > B , ^ a e M , B t f P - we have 

to prove A e P - Let & i P—» A . Then tfy*, J P - * fi 

and, as B c P , *£ AA<*t and ifytc. » ^ 1 ^ for some 

i5^ 5 fl. —> B • Consider decompositions it* m t£'i?»"T t&j • 

- *-,' &" with i*', ^ e E , **" t* /« Ml , Then, t*y 

( i i ) , there exists some L € iw € with t* '« 1£ 1%' -- * 
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Hence *l /&'r *[ /it , A c P and ( Pi ) i s proved. Let 

*): A -* B , %> € £ , A & P . We have to prove B e P . 

Let 1> : P—> B . As P is projective (otherwise £ f P, ^ ) 
f ia not defined, see 1,14) we have if * 1^ i> for some 

ifc, : P - * A . since A e P we have ^ ^ 1 a n d *l ''** * 

Hence ( f̂  ) is proved. Let { A^ * A € A } be a non-void and 

small family of objects in P . By (J3<f) there exist9 i t3 pro

duct i f : S — • { A ^ j A e A J in £ . In order to prove 

( Pj ) i t is sufficient to show that 5 c P * Let t* : P-> 5 . 

Then 1% /& if and i* ^ --* i£ «7" for some s ta r ^".. Sin

ce */ i s product we have {T' — Y *& for some iff . I t fo l 

lows i ^ y ***iiiry and, again by , / being product, 

i* - *2 Y ' Hence ^ / a * > 5 6 P and ( P3 ) i s pro

ved. 

Suppose now that P -j* 0 i s any class of objects s a t i s 

fying ( P£ ) i *• 4, 2 , 3 . we have to prove that P is primi

tive • 

First take any semiinitial and projective object P in 

our bicategory and consider the s tar if of a l l i^ c £ with 

<$ ; p"-* A , A e P . Because of P 4* 0 , ( i i ) and ( P1 ) the

re exist8 really at least one 1?* with the above property. 

By ( Hi2} we find a small s tar fT with properties mentioned 

in (&-,) and for this (T we find r[ : P —• ft as requi

red in ( & j ) . Prom r[ I T* f ( i i ) and ( P̂  ) i t follows easily 

' that 

(oC) for any /} : F — • B with B e P i t i s always^//? . 

Hence P c C ( P , ^ ) . We shall prove that 

(/J) 5 c P . 
Let the s tar T have the form (Ti P - ^ f f t ^ j A € A} 

with BA c P for a l l X c A . Let 36 : X - * { ^ } A c A } 
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be the product of the family { BA ; A c A } • By ( P$ ) 

we may suppose that X € P - As r^ / *J* we have JT*« 

» 7 ^*" f o r s o m e s" t a r ^"" a n d t a s & i a tlie product, 

(T" a y ^ ? for some flT. We consider some decomposition 

^ -» y'tf" with y ' e £ and y " e MI . Then we have 

T=* r[ f'j'X . Since 7 T ' e E and ^ y 7 f it 

follows by (fl3) that %T^ a n d 7 * 7 7 * ^ for 

some $e . We have then 4 -=? y 9t and, using ( i ) and the 

second assertion of 1 ,3 , we conclude y e -Ml and y m * 

" T W ^ ' - B u t y : fll -> A and X e P , hence by 

( R- ) S c P . Thus ( /J) i s proved. 

We have already proved P c C ( P , ^ ) . Now, in 

place of an arbitrary P we take the semi in i t ia l and pro

ject ive object P from ( J 3 ^ ) . Again, we find ^ ; ^~* Q 

just in the same way as 1̂  was found for P and, again 

by (/3 ) , we have Q e P • There i s IP c CCP, ^ ) , too . 

But for t h i s special P quite P a C (P 9 *l ) i s true. 

To prove i t suppose any A e C C P , Ĵ ) . We want to 

show that A e IP . Take PA and P£ by C9^) . A-

gain, considering PA instead of P we find ^ A *' % *-» 

~> flA in the same way as f£ was found for P and, a-" 

gain, (2A € P . By (S$ .) 1) there ex i s t s some t> € £ with 

l£ : r> —> A . we shal l prove that 7 * / i * * 

Suppose that 7 * / 1^ • Then, by ( J3^ ) 3 ) , we can 

find some at : % —• % with o C ^ / <* ̂  • To t h i s 

oc we can find ^ ; ^ - » P , T ; P —* *A 8UCl* t h a * 

oc « <*, ff'Tr (see ( # ¥ ) , 2 ) ) . As Q, € P we have, by 

l<*h 7A /*"7 and d"?2 • 7A ** f o r 80ine ** • *• 
A c C C P , *£ ) and t i > ; P - > AA we have ^ / i r t£ 
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and x t£ • *J ^1 f o r 8 0 l M ^ - r * T h U 8 ^ ^ * <* °" f t* » 

» rf IT^ "*% m ^7 .4 ̂  rff a n d <>C 74 /«c i^ in contradiction 

t o our hypothesia. Hence fy / t > and t£ « w^ ir^ for 

some t ^ » 

Since l^ e t I t follows by the f i r s t assertion of 1 ,3 

that 1^ € £ . But o£ ; QA - > A and #A € P . Hence by 

( P-, ) we get A s P . Our theorem i s proved. 

1.16. Remark. Notice that i f IP-J- j? i s a primitive c l a s s 

of objects of a bicategory [ C , £ , IN J aatisfying 

(JJ^ ) i • 4 , 2 , 3 , 4 then i t can be written in the form 

p m £ (P77} ) where P i8 that projective and semi-

i n i t i a l object which i s introduced in ( fl^ ) . 

2 . 

This sect ion i s intended to show one application more of 

the preceding inves t igat ions . It deals with a specia l c la s s 

of models which we ca l l $, -systems. The main purpose of i t 

i s not to invest igate models in general but to give some fur 

ther i l l u s t r a t i o n of the ideas of sect ion 1. 

2 . 1 . Consider the covariant functor Homt(lf X ) oft the ca

tegory of a l l s e t s to I t s e l f ( X being f i x e d ) . I t assignee 

t o every t£ : X —> Y a unique Horn (I, X)^+ Horn (I, Y) 

denoted by i> . I t i 8 c lear that for t£ ; X —* Y and 

<yr ; y —> Z we have always $ y « i# Y • 

2 . 2 . An 1t -avatem of type I i s any aystem A of the form 

A * < X 9 1, 1C / where X, I f 2C are non-void seta and 

I t c Ham (lf X) * 3 » < Y, /, V > being some second 

& -system, the mapping it s X —* Y w i l l be called a 

homomorphiam of A into Si (abbreviated by t* ; A ~* B ) 

i f and only i f « ' ^ JT # It. Utf = 1T, & w i l l 

be ealled strong. 

- 30 -



2.3* It is clear that all fo -systems of some fixed type i 

and all homomorphisms of one & -system into another form a 

category. We shall denote it by C. . Let £,lH mean, res

pectively, the aubcategory of all atrong homomorphisms onto, 

the subcategory of all injective homomorphisms. It is easy to 

prove that [ C2 , E , M J is a bicategory. 

2^±. The theory of R -systems is much similar to the theory 

of universal algebras. We mention some most important facts 

needed below. 

Z%$. Let A * < X , I f U > bean % -sy3tem. We define, for 

any equivalence-relation SI on A , a new SL -system A - -* 

m < X x , If ZL^ > by -the following: X c is the factor-set 

of X by _2E" / the natural mapping x - X ~~* A 2 (with 

* 6 X X for all x e X ) induces r" i Horn CI , X ) -> 

—> Horn C / f Aj- ) • we put 1L^ « 11 x . Hence r . ' / A - * A j 

is a homomorphism (called natural) and x € E . Aj. is 

called the factor- & -system of A with respect to J35T * ^ 

2.6. Let 5" : A —* B , £* ff E • Let 2 * T be, res

pectively, the equivalence-relation on X , the natural ho

momorphism x i A —> A -£ corresponding to (T (hence 

X = G> G*^ )• Then, there is obviously an isomorphism 

4. : A - —* B with 6̂  « T L • It is clear that in the bi

category £ Ct f E 7 M J the condition ( ̂  ) from 1,11 

holds true. Really, we need only to replace every 0*c Ŝ  of 

the given star i*P c £ by the corresponding natural ho

momorphism f C E • 

2.T. The condition ( # j ) for [ C x , E , M J is also ea

sy to be proved. First of all, we may suppose that the small 

star (T*s { Xx ) A» «" AJ c £ consists of natural ho-
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momorphisms xx # e a o n corresponding to some equivalence-re

lation X . . Then £. * /"̂  -2L is an equivalence-rexation 

and the natural homomorphism ^ corresponding to 5. has 

both properties required in ( 3«j )• 

gj8,# Let {A^; A £ A J be a small and non-void family of ob

jects in Ct , A A » < X^ , / , 1lx > for all A c A . Define 

X and It by cartesian products X • "H" X , #.» TT 2£, • 

Observing that each 44, e % may be conaidered as a mapping 

•of I into X we obtain an ft -sy8tem A = <X. /, &>.It is 

easy to prove that the star of projections fr : A —> A is 
A «* 

the categorical product of the family -f A^ ) A c A j . Hence 

the condition ( fl1 ) i s proved for [ C£ , E , M ] . 

2.9* Consider a non-void set 5 . For any & e. S le t £ be 

the mapping of I into I x S defined by the formula 

i * « < i , -6 > for a l l i c I * Let ^ mean the set of 

a l l ^ with A m 5 . Then the system E « < l x 5 , / , g > i s 

an ft -system. More general, le t D be any set with J) /i 

n (I x S)« J# # We denote by rv ^ the ft -system Fg « 
- < f / H S ) u J , / , i > . 
2»10. The system r-j ^ from 2,9 has the following property: 

A * <X, I f2l> being any # -system and y • 5 —> 2£ any 

mapping, there exists always a homomorphism oC : f^ ^ ~> A 

with the res t r ic t ion (oc /S ) m yr . It ac^ : Fs ^ ~> A 

i s another such homomorphism then f o C / / x S ) - s r (ac^ /1 x S ) • 

Really, define oC by < if*>ctm iC£ yr) for a l l i c I 

•nd a l l /fr « S and foC / D ) ? D —> X in any way, Then, 

*• i(±5C) m (i±*)<c - <i9<*>oc * i ^ ? ' ) far all 

a. € I , we have ^ e C • i f *nd f*c / S ) ** yr . Henca 

^ * 1 p ~* ^ l a a homoaorphis-u For any <*f : ^p - * A 

with CiC, /SL > • Y - C Z V S ) we have iC&Sc ) - i Gfc ^ ) 
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and, using the above equations, <i9 4> ><-C » <i,4 >oC t for 

a l l i e 1 and a l l * c S . Notice that i f , in add i

t i o n , some y : J) —• X i s given, then there etcists a uni

que <*C : Fs p -* A with CaC /S ) * ifr and (<*> /J> ) * % * 

2.11. From 2,10 i t follows eas i ly that any ^s-J) i s serai-

i n i t i a l in r C- , E ; Ml J . Moreover, any f ^ p i s projec

t ive in E <CZ, E , M J . Really, l e t y3 . F^-* B = < Y, / , 1T > 

and V J / 4 « < X , / ^ > - > 3 , V f £ . ks Uv ** 2/~ there 

ex i s t s always some tfr: S ~+ 71 with (fi/S )-» Y^ • Again, ( 

as Xi> ^ y f there e x i s t s some £ : 2)—* A with (/i /J> ) * 

-* ^ *> . Now, following 2 ,10 , there ex i s t s some cC : F& - » ^ 

with C«X / S , ) m ip and Toe /J) ) » ^ . To prove /i ** oC i> , 

i t i s suf f ic ient to show that (fi/S^ =GL3/S) and (/l/J>) » 

.sfoCV/J)) . But these assertions are both c learly sa t i s f i ed 

by the above construction. 

2.12. Let A a < X, I , U > be given. Then there ex i s t always 

aom ^s J> a n d s o m e ^ ; Fs,p ~* * w i t h 1^ €• E . 
Really, there are clearly se t s S , J> with some surject ions 

(mappings onto) y r . ' S - * ' 2 c , ^ ; J> —>" A aid with D n 

^ ( I x 5 ) m 0 . Finding to f a n d £ an oC: FSJ>~* A 

by 2,10 we see immediately that <JC * E • 

2 .13 . Proposition. The bicategory [ €z, £., M ] (for d e f i n i 

t ion see 2 ,3) s a t i s f i e s the conditions ( # £ ) i « 1, 2 , 39 ¥ 

from 1,11. 

£roo£: (&£> i « 4, £.- 3 were proved in 2 , 8 , 2,6 and 

2,7 . For to prove ( 33^) put P »* ^ . . p with 5 » 

** { *i i *2 ? <** > *+ ? and J>m {di$ dx } and % ~ FTf B 

with T * St,,, t ^ J and £ • <"**» * x J for each A m 

G otg C . By 2 ,12 , find to any A c o^j C r some 
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-# • F5 ^ ~+ A > 1$ c E and put % * f̂  ^ ^ # Hence, 

by 2 , 1 1 , P and f̂  are semi in i t ia l and project ive . As 1) 

in (C8^) i s alriady s a t i a f i e d , l e t us prove 2 ) . Let oc . rj'—* 

_^ F> . Let L be the set consist ing of fc* oc , t^ ac and of 

a l l >6̂  € «Ŝ  such that € t <?c M < A , &A > or t^ot * <*> ^ > 

for some i c I . Let K be the set of a l l Jk. e VA with 

^ oc -» A or -t^ot « A . Hence L c 5 ^ ; K c D ^ and, 

caxd L -£ 4 , c*/ua£ K 4 1 • 

Now, we can clearly find mappings 

with f ^ l/S / t - ; - ^ and Ofci £ 2 / K ) « 1 ( 1 i s the 

ident i ty mapping). Following 2 ,10 , we can find homomorphisms 

6 i PA —• P and f : P -* PA with (ff/^* )='% > 

(G/J>A ) - -̂f > < l r / S ) « % , ftr/D)* £*. . For to prove that 

cC - oc 6* t i t i s suff icie-nt to prove Toe / T ) » fcc tf r / T ) 

and T oc / E ) -== foe 6" xr / £ ) . But for any £ e T we 

have t oc&v ** (toe) Wr « (± £. ) -% ifr^ ** f £ becau

se of t * € L , If -e C £ and <toceJ>A then € <?c 6 K 

and -€oC o^-r « -e oC ^ ^ - e - e ^ C . If < € E ana-eat m<£,4A, 

for aome £ e l and some ^ € SA then 4^ fi" t» 9 

-t<^CTx -» d *£ )Girs* *-£** 5F^ :J-riC^^r^r lJ*i^4 . .«oc.Hence 

Coc / £ ) « - C<KST/E ) and 2) i s proyed. 

Final ly , to prove 3) in ( G^) consider yr : PA —» 3 , 

i> : r^-* C , i f , *> € £ and >> f ifr. Following 2,6 we 

may obviously suppose that y and V are natural homomorph

isms, B « f *A )ifr ; C "" ^ E^w for some equivalence-rela

t ions *u/ and H on the se t M* (I * 5A) u PA • T> •/"*? 

implies H + V and hence there e x i s t some m^ , i*n.x 6 M 

with in,, H /nxx and in.,- C^m- ] £ 1*n>x . Now, i t i s 
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suff ic ient to show that there ex is t some fi11nx£ Nm ClxT)u B 

sind some homomorphism oc : PA —> PA with it^ac -» *>tf and 

^lxaC m tnx . Really, i t follows then that n t cci>m n^oc T> and 

njOCY + /na> ^ V 3 0 t n a t ^ ^ /" <*• V • Essent ia l ly , t h e 

re are three cases to be considered . F i r s t , when m..- a <x , ^ >> 

m., « <i", ^ 4 > for some .£', i " c I , ^ , *.-4 c ^-* * T n e n 

put /it., » < i ' , t 1 > , ^ * ^ i ' ^ t 2 > and oc : f>'-* f^ choose 

So that t^ ec -= ^ j t^ tfC • j ^ ^ - Second, when /m^ -» 

» <V, *'A > ; ^ € DA • Then put n^ » <i'f t^ >, <nx » <, and ' 

oC choose so that *£., 5c » 4^ ? <-<-C «• w ^ • Third, when 

^ 1 > /rn2 e ^A • T n e n c learly ^ ss -en f <nx m -Cx and 

<j oc « 'W.̂  ; ^ ^ • 'w'2 * Herewith our proposition i s proved» 

(Notice that we have actually proved ( 3 1 . ) (see 1 ,12) . ) 

3 . 

3.1. Consider a bicategory L C ; £ , M J and let P -#• 0 

be any class of objects in C satisfying conditions XP± ), 

i* '/, 2 from 1,15. Let C be the full subcategory of C 

with ot>j £' * P. Put £'-« £ n <T', M ' - M n f f ' . Then 

[ C , E', M'J is a bicategory. 

3.2. Theorem: Let f C , E ? M J be a bicategory satisfying 

the conditions ( 3 1) (# x) (# s) ( iJ^ )• Let P 4* 0 be any 

primitive class of objects of f <C ;E,M J. Then the bicatego

ry L C , E', M ] ̂  corresponding to P in the sense of 

3,1, satisfies the same conditions (S 1 ) ( «#2 ) («#,) (Si) . 

£roo£: ( flj) is satisfied for f C , £', M'J by theorem 

1,15. (%) and ( ft$) hold true in CCf E', M ' J as they 

hold true in [ C . E . N ] and, again, because of theorem 

1,15. Thus we have only to prove (33'K 

In the proof of theorem 1,15 a method has been described 

of how to get to any projective and semiinitial object F 
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eom r[ 5 P - * Q , ^ « £ s a t i s f y i n g ( o C ) and ( / ? ) • 

% ( 43p which i s supposed t o hold i n f C , E , M 3 we have 

some f ixed P and t o any A e o6g € aoiae PA and 

P ' . By the above method find ^ : P ""* ^ > 7 * ; 5 "* ^ 4 ' 

^ A : ** ~* ®A s o t h o t by <y*) ®>aA>QA€p9 °% €'m 

m claim t h a t ( &^ ) ia a a t i s f i e d fo r £ C \ £ ' , M ' J with 

these fl, fy , Q^ ( i n place of P, r^ , P
A in the 

wording of ( £ ^ ) ) , fo r a l l A c ofy €' . 

Real ly , ffl i s s e m i i n i t i a l i n £ ' by (<*). (A i s 

p ro jec t ive in £ £ ' - £ ' , M ' J because P i s p ro jec t ive 

in C C , E , M J and ^ € £ . S i in i la r lv , ^ and ^ 

are p ro jec t ive and s e m i i n i t i a l i n £ £ ' , £ ' ; M ' J # For any 

A e o ^ C there e x i s t s always some t £ : QA-*A} <$ e E • 

Real ly , we have i £ : f̂  —> A for some i £ ' € £ and, 

by ( o t ) , 1*'« *lA i* , i* : &A - » A . N o w > using the 

f i r 8 t aa se r t ion of 1 ,3 , we get t& € £ and, of course , 

i> c £ ' . Hence 1) i n ( fcj) i s proved. Let ot : ^ - » <3^ • 

Aa PA i s p r o j e c t i v e , t he re e x i s t s some oc' .• P4' ~-> % with 

at '^A « 7 A oc . Now, by ( B£) fo r £ C , E , Mf 7 we have 

oC' « o c # < r # r ' fo r some 0 ~ ' J £ - * P , r ' : P - * PA • 

By ( o t ) , ^ /^tfl and thus tf'fj sr -yA 6"* fo r some 

<T ; Q>A"+ Q> . S imi l a r ly , ^ ^X\A a n d r ' ? A " 7 r f o r 

aome <r : A —* <-U • Now, *^ot - oc'*^ « flcV'r^^^r* 

• < t V t a , ^ o t f r ) h e n M cc - o c $--* . Thua, 2) i n (&^) 

i s proved. F i n a l l y , l e t us have ^ , y « £ ' , yr : ^ —> B ; 

>>: (S4 - t C} i> f Y • Then c l e a r l y ^ A ^ ^ ^?A Y • By ( 3 ^ ) 

f o* C C , E , M 3 t he re ex ia ta some o c ' : />' - > P^ with 

" ^ A ^ ^^^A T • BJr"(oc) we have ^ / < * # 1 2 A a n d 

dc'iK m fiAot f o r some oc ; fl^ - * fl^ . Now, oC >> /oc y 
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would imply ^ o O ' / ^ ^ y and o c \ A V / * c ' ^ V to
fc 

contre i ic t ion to the above resu l t . Hence eC>> / o C y a**1 3) 

in ( -81) i s proved. 

2 . 3 . As the bicategories of propositions 1,13 and 2,13 s a t i s f y 

conditions ( Bi ){&z){ 3 f ) ( -3^. ) these conditions are s a t i s 

f ied by bicategories corresponding to primitive c lasses of u-

niverse l algebras or ft -systems. 

4. 

In th i s sect ion we want to indicate some relat ions bet 

ween the present invest igat ions and some of those ideas which 

concern the concept of independent s e t s in the sense of J . 

Schmidt (cf £ l 2 j ) . Let X be any subset of an algebra A • 

B being any algebra isotypic to A ; X i s cal led B - i n 

dependent i f and only i f any mapping y ; .X —¥ & can be 

axtended to a homomorphism <p~: *&(X) —* ft where 

"it C X ) means the closure of X in A . We want to f ind 

a categorical equivalent to t h i s concept (and to some others) 

and we guess the present way may turn out to be an appropria

te one. 

4 . 1 . Let [ C , E , M ] and £ C \ E ' , WV J be two bicatego

r i e s and l e t the f i r s t one s a t i s f y the conditions ( .%) i * 

, /lt 2,3,-r* from 1,11. Consider a covariant functor F : C-+ 

*-y C and suppose that 

(F<) I f <TC € E then F f o ) c £ ' . 

(F%) I f oc € M then F fa) € H ' . 

( Fj) I f the star )f* f -^; X c A J : S-+{A^) A- c A f in C i s 

the product of i \ t A t A } than the s tar F C / ) » 

W F ( ^ ) ; : \ c A } : FCS ^ F c V ^ ) / A c A} in C ' la the 

product of { F £ A A ) 5 A € A ) » „ » 

4 j i . Assume 4 ,1 and A c o4j C . Lat X be a projective 
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object in £ C\ E ' , H P 3 and l e t ^u,: X - > FfA ) . Then we 

shal l 8ay that A la generated by Ac i f and only i f the 

following two conditions hold: 

(Gi ) I f B COfy Cf 0 C , / 5 M « > O , (UF(aL)m(U. F((l) t h e n 

cC - /3 • 

( ( J 2 ) I f B ,Cc<4'<C,oc; /4 -*3 ,*&. C-»e>,*Cm*H,(uF(oc)ssAF(9e) 

for some A : X —* F(C ) then oc » oc1 ae for some 

eC,, : A -+ C . 

4 .3* Assume 4 ,1 and 4 , 2 , Especial ly , l e t A be generated 

by <*t : X --> F f A > . Let 3 € otg' C . Then ^ct w i l l 

be cal led B "independent i f and only i f for any ^ ^ X - • 

—• F C B ) there ex i s t s always some i£ : A —* 3 such 

that ^tt Ff # ) « o£ 0 I t i s clear that a* i s then u-

niquely determined by i£ as one can see from ( 6, ) . Denote 

by imd (U, the class of a l l ft such that (U. i s 

ft -independent. 

4 . 4 . Theorem: Assume 4,1 and 4 , 2 . Especial ly , l e t A be 

generated by (U, : X —* F (A ) . Then the class inoL (%JL 

i s primitive provided that i t i s non-void. 

£r£0£: Theorem 1,15 shows that assuming md (U, 4 0 we 

need only to prove that (Q ) i » 4, 2 , 3 are sa t i s f i ed for 

imd (u. . 

Suppose B € imd (U., ae : C - * 3 , ae e Ml and l e t 

us show that C e imd (U. . Suppose i£ : X -» F (C ) • 

Then 1* Ffae ) : X -~v F (" B ) and, as B c ( W ^ , we 

have i5 F f a e ) - (U, F (oc ) f o r flome <* ; A - * ft • 

Now, by ( <Ŝ  ) f we have oc » oc.-, ae for some 0Ct ; / 4 - > C . 

Thus ^ F f a e ) - <«- F(^ )F(9t ) snd t as FCet ) € M ' , 

i t fol lows 1* - (U. F (ac^ ) . Hence (fr i s C - inde

pendent and C c imd (UL . ( ^ ) i s proved. 
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Suppose again B c imd (U,, *>> : 3 -*> C f >? e £ and l e t 

us show that C e <md (U. . Suppose t* ; X--> F(C ) . As A 

i s project ive and F Cv> ) € E ' we have it * tfif F Ct> ) 

for some 1$, ; A —> F C B ) . As & £ Vnd (u. there 

must e x i s t some /A ; A —> B with 'A -» (U. F(^T ) • 

Now, % &, y> : A -** C and <tc F <o$~ -P ) « 

- (U. Fty -)FC^)A^F(y>) m <& . H e n c e ^ i 3 C - i n d e 

pendent and C e innd (U. . ( / # ) i s proved. 

F inal ly , l e t B^ € <md (U, for a l l X e A and 

l e t the s tar tf = { ^ ; A * /A J : 5 ~> { ^ ; A € A } be the 

product of t h i s sy9tem. We s h s l l show that S € <#id (OL . 

Suppose & ; A - > F C S ) . Then i> FOr^ ) : A -> F ^ B A ) 

and as B^ C t ^ ^ we have <& F Or^ ) * (U. F (px ) f0P 

some ffl1 : A —> B* . As l / i s the product we have jO -=• 

miyffT (X € A ) for some y ; A -> 5 . Thus (uFty) F(f)* 

*<&FCtf) and, as F £ t f ) i 8 product by ( F, ) , i t turns 

out that (U. Fty) « 1? . Hence, /cc i s 5 -independent 

and 5 € <"*d (U . ( J| ) i s proved. 

4 .5 . Let [ f , E , M ] be any bicategory sat i s fy ing ( # £ ) 

i m 4 , Z, 3 , ->• ., and l e t P -f- 0 be any primitive c la s s 

of i t s objects . Hence we may write P * € ( P7 ^ ) for s o 

me projective object P . Taking for F the ident i ty fun

ctor F ; C C 7 £ ; M I J — * [ C , £ , AM* J , then, with r e s 

pect to F , (H i s generated by i£ ; P —* ft . For ( (y-r) 

i s clear and ( Gz) follows e a s i l y from ( i i ) in 1 ,2 . Now, one 

can eas i ly see that tmd. -*£ • C CPy^ ) m P . Hence every 

primitive c lass P + 0 of objects in C <T , £ , Mf J can 

be obtained in the way of theorem 4,4 when choosing a sui table 

functor F . 
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