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Commentatione8 Mathematicae Universitatis Carolinae 

6, 1 (1965) 

STRUCTURE OP DYNAMICAL SYSTEMS 

Otomar HXjEK, Praha 

Summary: Every local semi-dynamical system T with unici-

ty on a topological space P may be immersed within a global 

dyn. system on a topological space P A 3 P . If P is a com­

pact ft -manif old, then T may be extended to a (global) lo­

cal dyn. system on P itself. There follow results on the lo­

cal structure, near non-critical points, of local semi-dynami­

cal systems with unicity on 2 -manifolds. 

The motivation of abstract dynamical systems ("global") in 

the present paper) is well known. Restricting these to open or 

to +invariant subsets, there result local dyn. systems and se­

mi dyn.systems respectively (cf.[3], [5]; the latter were named 

unilateral in [3]). Another motivation for these derived con­

cepts is that local dyn. systems arise naturally from autono­

mous systems of differential equations satisfying local exis­

tence and unicity conditions, but without prolongability of 

solutions; and that for semi-dyn. systems, rather weak condi­

tions for existence of critical points have been obtained [3]. 

The present paper is devoted to the study of relations between 

these different types of dynamical systems. The basic result 

here is that unicity (see definition) is a necessary and suffi­

cient condition for a local semi-dyn. system on a topological 

space P to be extendable to a global dynamical system on 
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• larger epsce, in which P appeara aa the intersection of an 

open and a +invariant subset (assertions 11,14,17). I f , then, 

P la an n-manifold, I t la open In the extension, which la 

also an n -manifold (theorem 25). 

1. DeflnJUofrff% Uw% conaeonengea. 

We shall consider several related structures on an abatract 

set P . In each caae the structure wi l l be termed a ct-ayatem. 

and consists of a partial binary operator from P x E* to P> 

i . e . of a mapping, say T , from a aubset ©f P M. E* into P 

whose value at ^ , f i J s . P x E 1 la denoted by * T 0 • 

The definitions to follow concern the 

i n i t i a l value property : «x T 0 =* jc • 

group property ; (x T 01 ) T &Z » *x r <*0f + ^ > / 

unicity property; *x T 8 -» J . ' T 5 ' impKcs *m x* T (& - &) • 

T i s a local dynamical system {JbL mvatem) on P i f 

( i ) for every X e P there are oc^ , 4jc with-o© ^ $ x < 

< 0 < <x^jfi -t- oo such that Gc, ^ e domain T iff fix < 

*• ^ < <* ; and 

(11) the initial value and group propertied hold for all X 

and all % auch that both Cx 7 $1) and one of (x T 0^ 7 0Z )f 

Oc, ̂ t ^ ) are in domain T . 

T ia a global dynamical ayatem ( QCL ay at em) on P i f i t ia 

an id ayatem with fl* » - <*>, oc^ m + oo 

T ia a local semi-dynamical ayatem ( Jfai aystem) on P i f 

( i i i ) for every JL 6 P there ia an JC^ ; 0s£ c*̂  < •+• -ao, 

auch that G t , 0 ) % domain T i f f 0-* .9 < <x , and (11) holds. 
x * 

T i s a global semi-dynamical ayatem ( a/bd ayatem) on P 
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i f i t i s an JltocL system with oCx a +> oo • 

(Cf.[6J f chap. Vj[3J ,[5J.) 

Generic names ( d system, local system, global system, semi-

syatem) wi l l be used with the obvious meaning. The relation 

0 ( , 8 ) e domain T wi l l be expT»#*»ed, rather ineffectually, by 

" X r B i s defined". As usual, £ * denotes euclidean 4 -spa-

ce, £ and E_ the subspaces consisting of non-negative and 

non-positive rea l s , respect ively . 

Given a at system T on P , « subset X c P with the 

property that 

j( T 0 6 X i f J < € ' X ; 0 > 0 , . J < T & i s defined , 

will be termed + invariant ( in P} T ) \ similarly for -> inva­

riant se t s and invariant s e t s ( 9 & 0 above replaced by 0 * O 

and 6 € H respect ive ly) . 

In a <fydi system, the group property obviously implies the 

unicity property; and similarly in an ZdL system, at least 

for arguments such that <*' T C6' - 0 ) i s defined . An 

£*d system wi l l be said to possess unicity i f the unicity pro­

perty obtains for al l values of arguments indicated with d'-B» 0* 

Example 2 . There exist qe>d systems without unici ty . E .g . t 

let P consist of a l l complex numbers % with to>g x?* -^ Jtsrp 

Jk» 0 f± 1 or with x, -= 0 ; l e t T describe motion along P 

with the real coordinate increasing uniformly. 

In each case of definition 1, the i n i t i a l value property im­

p l ies that T maps onto P (indeed, th i s may replace the in i ­

t ia l value property in definit ion 1,£3, lemma l j ) . Thus, for in-* 

stance, the existence of a continuous &ad system with unic i ­

ty on a dendrite i s apparently a serious restriction on the 

possible topological structure of the dendrite. 

The conditions for the group property to ho ld, def init ion 1 
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i i f may be formulated in terms of the ^ f fi^ as follows . 

Lemma 3 . I f T i s an 4d system then 

and s imilar ly for Xkd systems* 

The proof i s straightforward. Hence, immediately, 

Lemma 4 . I f T is an ZcL system and *X has period X -# 

t O ( i . e . , .* T A, -- X ) , then /?.< « - oo ; oc^ « + #> . Similar­

l y , for i W systems: J ( T A » ^ with A ;> 0 implie* 

O C ^ ar -+- OO . 

Lemma 5 . I f T i s a d system on P 7 and <3 c P ia 

+ invar ian t , then the r e8 t r i c t i on of r to Q (more preci8ely, 

to domain T n ft x E ) i a a semi-system on ft , global 

i f T i s g loba l . Purthermcre, i f T is JLd f then the r e s t r i c ­

ted semi-system possesses u n i c i t y . 

Obviously, i f fl is invar iant then the r e s t r i c t e d system 

i s of the same type aa T . Next, consider ra^thoda of obtaining, 

from global systems, local systems on subse ts . This leada^to the 

problem of choosing new dC^ ; fi^ for 8 l l ,x in the subset , 

in such a manner as to preserve the formulae of lemma 3 and 

fix < 0 < <** • I t seems hardly rea8onable to do t h i s d i r e c t l y \ 

however, in the more specia l s i tua t ion described in def. 6 , we 

have the convenient method described in lemma 10 . 

Definition 6 . Let T be a d system on P f and l e t r 

bs a topology on P . The s t ruc tu res f and T are compatible 

# ( i ) domain T i s open in P x Bi ( in P x BA for s e ­

mi-systems), and 

( i i ) T i s continuous. 

In t h i s esse T may be termed a oi system sSk P, T or 

merely on the topological apace P ( i f t i s "understood'1). 
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To sketch the background of th i s def init ion, there are tha 

obvious corresponding notions of a cL system compatible with, a. 

g . f a uniform structure, a metric function, or a measure. Rough­

ly speaking, these correspond t o , respectively, a uniformly con­

tinuous T . a distance preserving T • a measurability and mea­

sure preserving T (comp. integral s t a b i l i t y , parallel isable 

ayetem8f systems with invariant measure^ J f chap.V, VI), I t 

should be remarked, however, that probably tha most interesting 

situations arise i f there i s given a uniform structure % on P, 

and a ci system T compatible with the topology induced by *U, 

but not necessarily with 1i i t s e l f . 

In a similar fashion one may consider oi systems on P 

compatible with the structure of a^ifferential or analytic mani­

fold on P . The correaponding aemi-systems then define, in the 

obvious manner, an associated f i e ld of d irections on P ( in 

differential-geometric language, this i s a ecalar f i e ld on the 

ma/hifold). 

It remains to verify that "natural" oL systems do sat isfy 

definition 6. To see t h i s , l e t 

dO 
be an autonomoua system of d i f ferent ia l equations in c. ? with 

•f : £ -> E continuous, and postulate local unicity of ao-

lut ions . For Cx7 9 ) c E ^ x E ^ define * T 9 as the va­

lue at d of that solution which haa value »x at 9 =- 0 -

By c lass ical theorems, this defines an <£d system in £**. From, 

e . g . , [ 2 f chap »II, 4.lJ i t follows that T i s compatible with the 

usual topology of E 

The presence of a topology compatible with a cL ayetem T 

haa consequences on the properties of T ; one of these i s ex-
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hibited in theorem 8 . For this we f i r s t need 

.Lemma 7> I f r ia an Zbd system on a topological space ?, 

then the function oc : P ~ * E i tf definition 1 i i i i s l o ­

wer semi continuous. If , then, ct^ < + oo for some -X € P 

and 9^ ~> <X̂  in E^, 0 ^ 6^ --: oc^ , then x T S^ 

does not converge in P . 

(Proof.) Consider the seta 
Ax ~ fx.€ P : <*, > A f . 

I f \ < 0, obviously A^ -» P i s open. For A > 0 , consider 

the set 

{Ufd ) : x € P,A<6<ccJii m domain r i CP~ (\, + oo))* 

From definit ion 5 and A > Q , this set i s open in P A £ ; 

hence i t s projection A* i s open in P. This proves that oc 

i s lower semicontinuoua. 

Now assume 6^ ~* oc^ i a E1 with 0 6 ^ < ^ ; 

and x r 0n —• ^. in ? . Using semi continuity and lemma 3 , 

0 -c OC-, f= M*n,vn,f ot * M#n imf oc ,. * -. / ^ «m:f<ot - 0 )-=• ^ , 
* *-+y ** **. **. •* n 

contradiction. This completes the proof* 

Remarks. Obvlousy, If T i s an JUL system, then similar 

conclusions obtain for the second function /3 * P-* £ (de­

f in i t ion 1 i ) . This result shows that for local systems, "limit 

sets'* of trajectories do not have properties analoguous to tho­

se of global aystems*. 

If , in lemma 7 , T also has the property that ocx i s 

continuous, then we have a stronger conclusion: i f oc^ < -+• oo 

and .x^ -> * in P , 0 £ di < oCX{ and $i _> cox 

In £* 7 then X^ T 0± does not converge in P . However, 

the postulated property of T i s rather a r t i f i c i a l : 

Example 8 . Let 
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P « {Cx, <%) e Ez : X < Q or <% > 0} 

and define 
(*, 'V ) r e * (x+ 6, y ) • 

Thtn T i s an Xd System i n P, oc, * -t~ oo 

Cx , = / * I for (SJL & 0 . 

A direct consequence cf lemma 7 i s 

Theorem 9* Every local system on a countably compact space -

i s global. 

The obvious interpretation cf th is resu l t i s that, on coun­

tably compact spaces, one cannot have a non-global local system. 

However, another possib le application may be suggested: The d i f ­

ferent ial equation in one unknown 

A*. 9 t(e7*) 
de 

with T ; E -> E continuoua and periodic in both variab les , 

and with unicity of solu t ions , defines an Aftd. system on a to ­

rus f 2tchap#XVIlJ. Theorem 9 states that solu t ions are prolong­

able ever the entire real axia. In the present case, th i s also 

followa from boundednesa of i and familiar theorems on prolong-

a b i l i t y . 

Lemma 10o I f T i s a local system on a topological spaca P, 

and (r c P i s open, then the restr ict ion of T to G- i s a 

local system on G (of the same type) . If T has un ic i ty 

then so does the restricted system. 

This i s quite obvious\ the oc 's of the restricted sys­

tem may be determined, for -x 6* <r , as 

<** - /94Hl <0 : °* °'~ * implies * T0'e 0- } • 

Lemma 7 y ie lds another view of th i s construction. I f the or ig i ­

nal system la global, than the restricted system may well be l o -

• 59 -



cal non-global. Collecting parte of lemmas 5 and 10 we obtain 

Proposition 11 . Let T be a <%cL 8yatem on a topological 

apace P - Let G be open, Q, -*- invariant in P. Then the 

restrict ion of T to G r% Q i s an £*d system with uni-

c i t y . 

2# Conatruction of cjd extensions. 

The construction to follow shows that every *L*d aystem 

with unicity may be obtained by restricting some <$d system on 

a larger carrier aet. In the topological case there reaulte an 

assertion converse to proposition 11. 

Conatruction 12. Assume given, a d aystem T with unici ­

ty on an abatract aet P • We proceed to define the follwwing; a 

relation ^ , a aet P* f a binary operator T and two aeta 

P , P . I t may be noticed that the conatruction of P ia 

a close analogue of the .method used in elementary number theory 

to obtain the aet of a l l integera from the posit ive integers. 
/[ 

On P x £ f l e t <-v/ be obtained by aymmetrising the re­

lation between 

Cx , 9 ) and (x r € , & - e ) f or 0 & £ -< ^ -

I t ia read i ly verif ied that ~ ia an equivalence relation on 

P x £ • the unicity property i s used to establish tranait iv i -

t y . Define PA aa P .*. E A <m,<xi <^ 

Next, define a binary operator T from P* x E ta P^ 

by f i r s t sett ing 
(1) r * , 9) f ^ » Ox, & -*• a ^ 

and then passing to equivalence c lasses . Obviously, T ia a 

act ay at em on P * -

Define a map ft : P - v P* by taking for <n(*) the 
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equivalence class contsining (j< , 0 ) * 

(*, 0) € fl (x ) € PA . 

I t i s easi ly shown that «fi i s 1 - 1 and that 

(2) f t C * T A.) - p.Cx) T X 

for 0 -S A < oc ; i f the given T i s an - ^ system, then 

(2) also holds for t3^ < X < oc^ - Thus we may and shall 

identify P with fiCP)f thus obtaining P c P A
 ; an 

^ e P i s identif ied with the equivalence class containing 

(x - 0) . From ( 2 ) , T is obtained by restrict ion of f - Since 

(x,0) = (x,0) T B from ( 1 ) , P generates PA in 

the sense that PA is the least invariant subset sf P A , T 

containing r*. 

Finally, define^a subset 
P+ . P f E< , 

the least + invariant subset of PA containing P • and s i ­

milarly 

P" , Pf £ l . 
Next we shal l exhibit some Important properties of P ^ f . 

One of these i s that ?A has no further cycles nor cr i t i ca l 

points than those already present in P . (The assumption that 

T i s a ci system with unicity on P is preserved.) 

Proposition 13. In PA
 f the set P generates P A in 

the sense that P A = P f E 1 . Hence P**" has no further 

cycles nor cr i t ica l points than those already present in P . 

(Proof.) In any equivalence class a.v in P A s e lec t some 

f x , X ) ; then 
C x , A ) - C x , 0 T f A c CPx CO)) f X 

so that Z c X f A as asserted. 

If X € P A is critical or on a-cycle, then 
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X - X T R/ and a* Just shown, t h i s l a t t e r set must in te r sec t 

P ; hence JC € P , 

Propoaition 14* T deflnea a <£*a£ system on P +
 ; an 

JLcL system on P ~ . 

P - P + ^ P~ ; P* ~ P+ u p~ . 

P* P+ iff T is a ^>«i ayatem, P = P * iff T is 

a c^d system* 

(Proof*) For the first statement use lemma 5* Second state­

ment: if 
*,= , X T - 0 e P ~ ; x e F7 9 * 0 , 

then ZTX**(XTX)T-9€P~~ for X < oc^ - thus 

T r e s t r i c t e d to P~ is an £d system (with fix &• - oo ) . 

Obviously P c P * n P ~ . For the converse inc lus ion , 

take any x. c P+ n P" ; then 

x-+ (x, $) ~ (x',~9') , 9,0'zO. 

There are two cases* Ei ther , for some e* with 0 -~ e ' < oc t , 

JC c . X ' T e f 0 = - 0' ~ e ' . 

The l a t t e r of these implies 9 =: 0' * s.' = 0 7 and thus 

Z -+ (x j 0 ) is in P . Or. 

*x'-* JC T * , - 0 ' - 0 - e , 0 * e < <*-* > 

so that 0 & 0 *» £ - 0' ^ e <. <TC^ and x r 0 ia 

defined, and thus z->(x,G)~(x-r&,0) i s again in 

P . Thuw P + rs p- c P • 

The remaining statements have t r i v i a l proofs* 

Proposition 15* P A , -f are determined uniquely in the 

following aenae* If T i s a qxi system on a set P ^ P 

with r e s t r i c t i o n T , then there exiata a map 4x * P*—> P , 

iden t ica l on P , and with 

(3) J%(* ? &)« A(x) T 0 for- (X,6)e P« „ £ ^ . 
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If , .furthermcre, P » P T E f i . e . i f P generates P , 

then A i s 4 - i onto P . 

The proof i s quite straightforward: A i s obtained by 

showing that 

Jh(*T9)=XTd, C* , 6 1 € P x £ 1 > 

defines a map as required, proposition 13 i s used here. The i n ­

verse map may be defined s imilarly, i f P haa the indicated 

property. 

For purposes of reference we col lect these resu l t s . 

Theorem 16. I f r i s a cL system with unicity on a set 

P ; then there ex is t s a ad system T on a set P A z> P , 

such that T Is a restriction of T and that 13,14,15 hold. 

Remark. It may be ahown d irectly that the operation cf for­

ming PA extends to a covariant functor on the obvious catego­

r ies (morphiams are maps preserving the cL system operators, as 

in ( 3 ) ) . Similarly for the operations of forming P*" and P ~ . 

Corresponding remarks apply to theorem 17 to follow. 

(Conatruction 12 contd.) We proceed to show that theorem 14 

may be 8ignificantly improved in case that the cL system act» 

on a topological space. 

Assume, then, that there i s a topology x on P , compa­

tible with the cL system T given i n i t i a l l y . Then there is a 

natural cartesian topology for ? x £ ? and hence a quotient 

topology x for PA f l , p.74 ff J . Since the mapping T 

defined by (1) (beginning of-construction 12) i s continuous, the 

topology T la compatible with the previously constructed yd 

ayatem T ( in definition 6, ( i ) i s t r iv ia l for global system** 

continuity i s obtained almost d irect ly using the following 



commutative diagram 

( P x E M x E* * p * £ 1 

I 
P V E"1 _----> P* 

where the vert ical maps are (induced by) the quotient mappings). 

The mop jt of ccnstruction 12 is easily shown to be interior , s t 

that , after our identif ication of P with ji CP), Pc P* t o -

pological ly . 

Theorem 17. In the situation of theorem 16, l e t T be com­

patible with a topology f on P . Then there i s a topology -r 

on PA compatible with both T and T . In proposition 14, 

P" i s open in P A $ in proposition 15, M> i s continuous, 

and i f P, T have the last-ind icated property, <h, is 

homeomorphic. 

(Proof.) The only non-trivial proof concerns openness of 

P~. I t i s eas i ly established that , in P x £ f the least set 

saturated with respect to <-v and containing P x E_ ( i . e . 

mapped onto P~ ) i s -

P * m { C * , 9) : x e P, B <. <*,* J ' 

$y definition of the quotient topology ( 1. c . ) , P~" i s open 

In PA i f f P°° i s open in P x E 1 . Take any c* ; 9)e ?**, 

and any 9' e B1 with 

D U U (0, 0) < 9' <- <^x 

From lemma 7, there i s a neighbourhood lJ af «x in P such 

that oC* > 9' for a l l <y e U. s e t V « (- oo , d' ) a 

neighbourhood of 9 in E . Then U >. V i s a neighbour­

hood of f*x; 9 ) 9 and obviously U x V c P ** . This 

proves P~ is open. 



Remarks. In the situation of the preced ing theorem, from 

P « P+ r\ P~ (proposition 14) i t followa that P ia o-

pen in P^.Thua we have the following diagram of incluaion 

mape A&mo -Ay&t: 
+ 4mAT 

ЬУC<X£ Љtyьfomљ: P 

ÌOpJU 

ýtoihai щЉmл: \ 

*" 4mAT 

Im proposition 12, obviously we cannot assert that P » P~ 

i f f T la an id system. At least we have 

Lemma 18. I f T la an ZcL system with un ic i ty on a topo­

logical apace P , then, in construction 12, P la open in P~~. 

(Proof.) Since P c P~" , i t suffices to ehav that P 

la open l a P A , N o w f the least subset of P x £ contai­

ning P x f C f ( i . e . , mapped onto P c P A ) and 

saturated with reapect to ^ la domain T ; th i s ia e-

pen by definition 6 . 

3« The openness condition: manifold*. 

Throughout th is section we make the general assumption that 

there i s given a oi system r with unicity on a topological 

space P ; in p9rticular, then, one has the objects P*, T 

of construction 12. 

I t wi l l appear presently that the condition that P be 

open in PA (the openness condition) i s rather useful in that 

i t y ie lds aigniflcant resu l t s . In t h i s connection we already ha­

ve (17 and 18) that P ia open in PA i f r i s an ^ sye-

tem. From the main result of th i s section (theorem 25) i t f b l l -

owa that the openness condition does obtain i f P i s an 
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n -wmifb 2d • 
t 

From construction 12 we reca l l that 

(4) P A % H i P r e • 
9eE^ 

Propoaition 19. I f P i s open in PA
 ; then PA ia l o ­

cally homeomorphic to P • 

(Proof.) For fixed B c £ i
 ; the map taking * £ PA to 

X T 9 i» a homeomorphism P A ^ P A ( « x — I - , X T - £ ia 

the inverse mapping). Thus, f i r s t , P i s homeomorphic to 

P-f 0 7 and second, P r- $ ia open i f P is open; in 

particular, (4) ia an open cover of PA • 

Corollary 20. Let P be open in P A . I f P i s T0 or 

T^ or Tp or an n -manifold, then ao ia PA . 

(Proof.) Each of the l is ted properties obtains i f f i t obtains 

local ly) then apply proposition 19. In the case that P ia an 

n- manifold, this reasoning y ie lds that P A i s loca l ly E*1, . 

To show that then P A i s Tz (and hence an n~ manifold), 

proceed thus: P i s sn n-manifold, hence Tji ; then P^ i s 

HL hence Tl , This compile tes the proof. 

I do not know whether PA i s Tt i f P i s such. 

Lemma 21. Let G be open in P and A c £ arbitrary. 

Then G T A i s open in P i f either T i s an JUL system 

or A c £ + and P i s open in P A . 

(Proof.) Since 5 T ^ « (J (r T ^ , i t suffices to 
0 eA 

. prove G T 6 i s open. In either case P i s open in PA so 

that (? ia open in P A , and hence G T $ i s also such. 

Therefore i t suffices to prove the formula 
G r i m P n C G t e ) -

Obviously the le f t s ide i s a subset of the right one. Take 

X e Pr> (6 r 9 ) . Thus there exist «x € <r, y « P with 
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(*f B)fty9~0) and we are to prove that x r 8 i s def i ­

ned, since then (x , 9 ) ^ (X.T&, 0 ) € <r r 9 . There are 

two cases, according as 0 * 0 or 9 < 0 • 

It 6 * 0 , then from (x, 0 ) ~ f^ , 0 ) there fo l ­

lows ŷ =• x T E , 0 ~ 0 - £ , i . e . ^ = x T 0 i s indeed 

defined. I f 9 < 0 we have similarly x * <*£• T - 9 

( th i s i s the case when T i s an Id system); then, from lem­

ma 3 , 
fix- fit-*-* " * " ° * ** 

and thus x T 9 i s again defined . This completes the proof. 

Remark. This result was proved i n f 5]for the special case 

that T i s an Jtd system on an « - manifold. Thus th is se­

cond assumption i s unnecessary. 

Proposition 22. I f P i s open in P* and compact then 

P = P* . 

(Proof.) By assumption, then, P i s open-closed in P* • 

Any X € P* i s of the form x* «* x T 6 for some x € P, 

9 e £* t so that i t i s in the same component of PA as X ; 

hence X i s in the same "composante" as x , i . e . in P . Thus 

PA - P . 

Example 23. There exist <jAcl systems T on metric P 

such that P Is not open in any topological space Q, 3 P 

on which there i s a « ^ system with restrict ion T • 

On < 0, 1 > c £ take the £*c£ system generated 

by the motion of a point, i n i t i a l l y at 1 f moving towards 0 

with suitably decreasing velocity . Thus x T & might be de­

fined as x / ( 1 f 9x ) for 0 * x * 1, 9 * 0 . Row 

assume there i s a topological space fl .3 P such that P 

i s open in 0, and that there is a $d system T en&with 
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restrict ion T . Since P i s open in £ , T defines an 

id system on P which again i s an extension of T . Since 

1 i s not c r i t i c a l , there is an arc, say 1 T C- £ , £ > in 

P with 1 as interior point; but 1 i s an end-point in P: 

contradiction. 

Lemma 24. I f P i s open in P* and PA i s compact, then 

P - P A . 

(Proof.) By assumption, then f (4) i s an open cover of a com­

pact P * . Thua | for some 017 •. . , Q^ in B 7 

(5) P* ~ U? P T 0* ' 

Now we shell prove ot • + ao for a l l x e P . Let 

0 • i + *iax 0^ ; then 

P A « P A
T - a « U ^ P r - e 4 , «*, > 0 • 

Thus for every x c P c P * there i s an ^ e P with 

(«* ., 0 ) *->/ f/y, - 6^) j hence ^ «• * T C ^ , so that 

6*L -< oc , and therefore 

0 <: W/n, £ A -c oĉ  for a l l x € P . 

Now, i f we had oc^ -c + oo for some JC e P 7 then 

- 7 < , < ^ J t x 0 » oc^ - 0 -v 0 with 0 —-> ocx (lemma 3 ) ; 

this would contradict the las t displayed relat ion. Thus 

oc^ S + oo . 

Next, set 6' — mim, d^ - from (5) 7 

PA - P A -i- - 8 = U * P f - 6 A , 6* » 0 . 

However, from at s -#- oo there follows P T e l » 

• P r c ^ c P , and therefore PA - U * P f e^ c P -

This concludes the proof. 

Remark. This result also holds for PA qiasi-compact 

f 1, P.113J. 

Theorem 25. Let T be a d system with unicity on an 
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n-manifold P . Then P* i s an *t~ manifbld, and P i s open 

in P A . 

(Proof.) From corollary 20 i t follows that i t suffices to • 

prove P i s open in P*. I t i s eas i ly shown that i n P x B > 

the least set containing P x { 0 } and saturated with res ­

pect to ^ (cf.construction 12) i s 

P* « {(XT£,-B): X€ P, 0* g <: ̂ fu {(*,*): X 6 P,0**<«*< 1 | 

so that , as before, P i s open in P* i f f P v i s open in 

P x E . T o show t h i s la8t , take any {*,£ > € P x £ f with 

^ e < oc^ ; then 

(6) 0 < , £ ) , O C T f f , - € > 

are general elements of P*\ Take A with £ <: X < cc fan& 

an open neighbourhood U of .x in P with U x < 0 , A > c 

c domain T (cf. lemma 7 ) . Define a map A ; l i x C- A f A ) - > P x E 

(here C-A , A ) i s the open segment) by 

,(<$, 0> i f 6*0 
Jk(y,e)m( 

V y r 0 , - 6 ) i f 0 * 0 . 

Easily, ..& i s continuous and 1 - 1 into P v | a l so f 

1/ x C-A ., X ) i s open in the (m> + D-manifbld P x £ 4 , 

so that, by the Preservation of Domain Theorem, At ia a homeo-

morphism and image .A i s open. Obviously, both .the points (6) 

are in image At • thus P i s indeed open* This concludes the 

proof. 

Corollary 26« If T i s an ihd system with unicity on an 

?l - manifold P , then there i s a unique maximal Zd system on 

P i t s e l f with restrict ion r . 

(Existence follows from 17,25 and 10; unicity from 17.} 

Corollary 27. I f T i s an tbd system with unicity on 8 
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closed /n-manifbld P , then i t i s a a&d system and there 

i s a unique <yd system on P i t s e l f with restr ict ion T • 

(Use 9,17,25 and 22.) 

Finally, theorem 25 makes i t possible to apply known results 

on the structure of fyd systems to lt>d systems. 

Theorem 28» Let T be an &>d system with unicity on a 

2-manifold P ; l e t x0 e P be non-crit ical . Then there 

exists a aimple arc S in P and a X > 0 such that, for 

0 & 6 ^ IX ^ S T & are d isjoint simple area, xo e S T A , 

S T < 0 > Z X > i s a neighbourhood of * 0 -

(Proof.) Prom 25, PA i s a i - manifold and P i s open in 

P A ; from 13, X0 i s non-critical in P A , T . Now apply the 

Whitney-Bebutov theorem ( e . g . , [ 4 ] , theorem 2 ) , taking i n i t i a l l y 

a neighbourhood of x0 e P c P A small enough to be inclu­

ded in P . Then use [ I . e . , theorem l j to show that S i s a 

simple arc, concluding the proof* 

For semi-systems T on P we may define S - points as 

those points of P which are not of the form x T 6 for 

any x € P . 6 > 0 . Thus from theorem 28 i t follows t*at 

every XACL system with unici ty on an n-manifold has no 

S - points . However, a stronger conclusion may be had* 

An 11-manifold with boundary (the term used , for /n m Z , 

in [Tj i s merely 2 - manifold) i s a 7JJ space such that every 

point i s on some homeomorphic image of an eu e l ide an * i - simplex 

fr* whose, interior maps onto an open aet» a boundary point i s 

then a point without neighbourhoods homeomorphic to E"1, • 

Pro DPS i t ion 29. Let T be an Jj*d system with unicity on 

an n-manifold with boundary P. Then every 5 - point of P, T 

i s a boundary point of P • for every non«*critical non - 5 -

point x0 e P (even i f i t i s a boundary point) the conclusion 

- TO -



of 28 obtain. 

(Proof.) I f x c P i s not a boundary point, i t has an 

open neighbourhood 11 homeomorphic to E ^ j from lenma 10 f 

T induces on V an Akd system with un i c i ty , to which 

we may then apply theorem 28. 

A another application of these resu l t s , l e t us determine 

a l l Zbd systems with unicity on '7- manifblds. Obviously 

we need consider only connected 1 - manifolds; topological'-* 

Hy, there are only two of these: euclidean £ and the 1 -

sphere S 

Example 30. First consider only qd systems. On £ , 

these are characterised eas i ly: each x r 6 (fixed X, ) , 

i f non-constant, i s s t r i c t ly monotonous, so that each non-em­

pty limit set is a single c r i t i c a l point ( in particular, the­

re are no cyc les ) . Thus one chooses an arbitrary closed Fc 

c £ as the c r i t i c a l poin ts , and for each contiguous inter­

val 3 f an arbitrary s tr i c t ly monotone map of £ onto J > 

to determine motion within D ( i f cp i s such a function, 

then x r 9 m g> (6 + y"*(x » ) . 

The (elementary) proofs of those statements closely paral­

le l the complete discussion of solutions of the "equation 

dy /dx m "f (*y,) in one scalar unknown with f continuous 

bounded. 

Similarly for qci systems on S :either Si i s i t -

self a complete cycle , or there ia a cr i t i ca l point X € -5 t 

whereupon on £ - x m £ there ia induced a qd. 

system which may then be treated as above. 

This established, we may characterise a l l JL*d systems 

with unicity on £ 1 and S 1 . To th i3 end i t suffices to de-
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termine the associated space P A in both cases, and than ap­

ply theorem 17. From 26 and 22 f CS'')* - &* f and 27 may 

be used. As concerns C E i ) A i t i s an 1 - manifold (theorem 

26) , but not S 1 (lemma 24) . Thus CEi)A
 e E1 with the 

original space aa an open subsegment. 
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