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STRUCTURE OF DYNAMICAL SYSTEMS
Otomar HKJEK, Praha

Summary: Every local semi-dynamical system ¥ with unici-
ty on a topological space P may be immersed within a global
dyn. system on a topological space P* > P, If P is a com-
pact s -menifold, then T may be extended to a (glebal) lo-
cal dyn. system on P itéelf. There follow results on the lo-
cal structure, near non-critical points, of local semi-dynami-

cal systems with unicity on 2 -manifolds.

The motivation of abstract dynamical systems ("global") in
the present paper) is well known. Restricting these to open or
to +invariant subsets, there result local dyn. systems and se-
mi dyn.systems respectively (cf.([3],(5]; the latter were named
unilateral in [3)). Another motivation for these derived con=-
cepts is that local dyn. systems arise naturally from autono-
mous systems of differential equations satisfying local exis-~
tence and unicity conditions, but without prolongability of
solutions; and that for semi-dyn. systems, rather weak condi-
tions for existence of critical points have been obtained [3].
The present paper is devoted to the study of relations between
these different types of dynamical systems. The basic result
here is that unicity (see definition) is a necessary and suffi-
cient condition for a local semi-dyn. system on a topological

space P to be extendable to a global dynamical system on
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a larger spmce, in which P appears as the intersection of an
open and a +invariant subset (assertions 11,14,17). If, then,
P is sn m-menifold, it is open in the extemsion, which is
also an 7 -menifold (theorem 25).

1. Definitions; first conseguences.

Ve -hll consider several related structures on an abstract
set P . In each case the structure will be termed a cl-gystem,
and consists of a partisl binary operator from P > E* to P,
f.e. of a mapping, say T , from & subset of P x E* into P
whose value at (X, 8 )&.Px E7  is dencted by x T 8.
The definitions to follow concern the

initial value property: x T 0 = x ;
group property : (x T 6,) T8, = X TG, +6);
unicity property: x T 0 = x'T ' implics x=x'T(0°-8).

Definition 1

T is a lacal dynamical system (Z4 gysteg) on P 1if

(1) for every X € P there are %, , Bx with-oco < fBx<
< D< X% +00 mxchthat (x,8)e domain T i#f By <
<8< %, , and

(11) the initiel value and group properties hold for all x
and sll 6 such that both (x, 6 ) and one o (X T6,,8,),
(%X,8,+6,) sre in domaim T .

Tisa global dynamical system ( gdm_l on P if it 1is
en Ld system with S = — o0, o, & + 00

T 1is a local semi-dynamical system ( £5d gystem) on P if

(111) for every X € P thereis an x,, O0sx, < + o0,
such that (x,0)s domein T 1iff 04 & < o ,and (11) holds.

T 1s a global semi-dynamical system ( gzad system) on P
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if it 1s an Zsodl system with <, = + o0 .

(ce.[6], chap. V(3 ,[5.)

Generic names ( d system, local system, globesl system, semi-
syatem) will be used with the obvious meaning. The relation
(x,0)€e domain T will be expressed, rather ineffectually, by
"X TO 1is defined". As usual, E ! denctes euclidean 4 -spa-
ce, E:_ and Ej the subspaces consisting of non-negative and
non-positive reals, respectively.

Given a d system T on P , asubset X c P with the
property that )

XT0eX it xeX,0>0, x1T 6 isdefined,
will be termed + invariant (im P, T ); similarly for - ipva~
risnt sets and invariant sets ( 6 > 0 above replaced by 8 « @
and 6 ¢ E? respectively).

In a qd system, the group property obviously implies the
unicity property; and similarly in an Ld system, at least
for erguments such that x’'+ (6'-6) is defined, An
Isd  system will be said to possess unicity if the unicity pro-
perty obtains for all values of arguments indicated with 8'-6» 0.

Example 2. There exist god systems without unicity. E.g.,
let P consist of all complex numbers X with ngw —g'- Jc:r,
k=0,%1 or with x =0 ; let T describe motion along P
with the real coordinste increasing uniformly.

In each case of definition 1, the initial value property im-
plies that T maps onto P (indeed, this may replace the‘ ini.-
tial velue property in definition 1,[3, lemma 1]). Thus, for in~
stance, the existence of a continuous 4&»d system with unici-
ty on a dendrite is apparently a serious restriction on the
possible topological structure of the dendrite. .

The conditions for the group property to ’hold, definition 1
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11, may be formulated in terms of the o, , B, &8 follows .

lemmg 3. If T 18 an {{ system then

Lxro = %5 =) Burg=f -0 for fix< 8<x,;

and similarly for £sd systems.

The proof is straightforward. Hence, immediately,

Lemmag 4. If T 1is an Ad system and X has period A *
#0 (.60, xTA =X ), then B, = ~0, ot = +00 . Similar-
ly, for Avd systems: X TA = X with A > 0 implieo
Xy =+ 00 .

Lemmg 5. If T is a d systemon P, and @ c P 1s
+ invarisnt, then the restriction of T to & (more precisely,
to domain T A~ O x E? ) 18 a semi~system on Q , global
if T 1is global. Furthermare, if T is £d , then the restric-
ted semi-system possesses unicity.

Obviously, 1if @ 1s invariant then the restricted system
is of the same type as T . Next, consiler methods of obtaining,
from global systems, locel systems on subsets. This leads to the

problem of choosing new o

x1s By for sll X in the subset,

in such & manner as to preserve the formulae of lemma 3 and

/3x <0« cc_x . It seems hardly ressonable to do this directly;
however, in the more special situation described in def. 6, we
have the convenient method described in lemms 10,

Definition 6. Let T be a d systemon P, and let
be a topology on P. The structures T and T are compatible
# (1) domain T is openin Px E' (in P x E:_ for se-
mi-systems), and

(11) T 1is continuous.

In this case T may be termed a d systemopn P, T or
merely on the topological space P (if © is "understood").
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To sketch the background of this definition, there are the
obvious corresponding notions of a ¢ system compatible with, e.
8+, & uniform structure, a metric function, or a measure. Rough-
ly speaking, these correspond to6, respectively, a uniformly con-
tinuous T , 8 distance preserving T ; @ measurability and mea-
sure preserving T (comp. integral stability, parallelissble
systems, syetems with invorient measurey[d], chap.V, VI). It
should be remarked, however, that probably the mast interesting
situations arise if there is given a uniform structure U on F’,
and a o system T compatible with the topology induced by ’d, .
but not necessarily with U 1itself,

In a similer fashion one may consider o systems on P
compatible with the structure of *ifferentiel a analytic mani- ]
fold on P . The corresponding semi-systems then define, in the
obvious manner, an associated field of directions on P (in
differential-geometric language, this is a scalar field on the
ma‘nifold).

It remains to verify that "natural® o systems do satisfy
definition 6., To see this, let '

—-a-{'—- = f(X)

X
deé
be an autonomous system of differential equations in Eﬂ', with
$: E"> E™ continuous, and postulate local unicity of so-
lutions. For (x, 8)e E™x e’ ,define X T 8  as the va-
lue et O o that solution which has value x at 8 = 0.
By classical thearems, this defines an 2d system in E™. From,
e.8.,[2,chep.II, 4.1] it follows that T 1is compatible with the
usual tcpology of E™ .

The presence of a topology compatible with a o system ‘r'

has consequences on the properties of T ; one of these is ex-
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hibited in theorem 8, For this we firat need
lemua 7. If T is an Lsd system on a topological space P,

then the function oc : P~ E7 o definition 1 iii is lo-
wer semicontinuous. If, then, Ay < + for some x € P
and 8, > x, in E', 04, < a, , them xT 6,

does not converge in P .
(Proof.) Consider the sets
A.ﬂ_ = {xe€ P:cc_x>.lf.
It A s 0, obvicusly A, =P 1is open. For A >0, consider
the set )

{(x,0): x€ P,Jl<8<ac'x} = domain T N (Px (.174-00)),
From definition 5 and A > 0, this set is open in P~ E’;
hence its projection A;  1s open in P. This proves that «
is lower semicontinuous. :

Now sssume O, — o, in E! with 0¢ 6, < <,
and x T 8, > 4 in P. Using semicontimity and lemma 3,

D<oty € 1:»_1";»*‘ Ky & liminf o, o =lim nflx, -8)=0,
contradiction., This completes the proof.

Remarks. Obvioudy, if T 4is an £d system, then similar
conclusions obtain for the second function A : P> E'  (de-
finition 1 1). This result shows that for local systems, "limit
sets" of trajectories do not have properties analoguous to tho-
se of global systems.

If, in lenma 7, T also has the property that o, 1is
continuous, then we have a stronger conclusion: if o, < + X
and.xi-—y.x'inP., 0 = 9'5<°°-"£ and O; — ooy
in E’ ,
the postulated property of T 1s rather artifid al:

Example 8. Let

then x; T §; does not converge in P . However,
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P={(x,y)e E*:x<0 or 4y >0}

and define _
(X, Yy)T 0 = (x4 6,%y) -

Then T 1is an A{d system in P, «

Gy = + oo for y > 0,

d'(.x,y):: Ix! for o = 0 .

A direct consequence o lemma 7 is

Theorem 9. Every local system on & countably compact space -
is global,

The obviocus interpretation cf this result is that, on coun- )
tably compact spaces, one cannot have a non-global local system,
However, another possitle application mey be suggested: The dif-
ferential equation in one unknown

%: £06,x)

with f: E2—>E" continuous and periodic in both variables,
and with unicity of solutions, defines an {»d system on a to-
rus [2,chep.XVII], Theorem 9 states that solutions are prolong=
able over the entire real axis. In the present case, this also
follows from boundedness of f and famili ar theorems on prolong-
ability.

Lemma 10. If T is a local system on a topological space P,
and G c P 1s open, then the restriction of T to G 1is a
local system on G (of the same type)., If T has unicity
then 8o does the restricted system,

This is quite obvious; the o, ‘s of the restricted sys-
tem may be determined, fa x € G , as

Ky w rup {6 :0< 8 @ implies X T8¢ G f -

Lemma 7 yields another view of this construction. If the origi-
nal system is global, then the restricted system may well be lo-
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cal non-global. Collecting parts of lemmas 5 and 10 we obtain

Proposition 11, Let T be a gd system on 8 topological
space P. Let G be open, & + invariant in P. Then the
restriction of * to G N G is an £sd system with uni-
city.

2. Construction of gd extensions.

The construction to follow shows that every .£Ad system
with unicity may be obtained by restricting some gd system on
a larger carrier set. In the topological case there results an
sssertion converse to proposition 11.

Construction 12. Assume given, a d system T with unici-
ty on an abstrasct set P. we proceed to define the follewing: a

relation ~, a set P, a binary operata T and two sets

2
P‘-, P~ . It may be noticed thet the construction of P" 1is
a close analogue of the method used in elementary number theory
to obtain the set of all integers from the positive integers.

on P=<E’ , let ~ be obtained by symmetrising the re-
lation between

(x,0) and (xTE,E@-€) for Os g < &, -

It is resdily verified that ~ 1is an equivalence relation on
Px E’ ; the unicity property is used to establish transitivi-
ty. Define P" as P = E' mod ~

Next, define a binary operata T from P x E'  te P’
by first setting ]
(1) X, 8) A = (X, 04
and then passing fo equivalence classes, Obviously, -?- is a
gd system on P* .

Define amap £ : P -~ P* by taking for »fl.(.%) the
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equivalence class containing (x ,0): -
(X,0)e n (x)e P

It is easily shown that .1 is 1 -1 and that

(2) plxTA)= ax)T A

for 0 =A< <, ;

(2) also holds for 3, < A < o¢, - Thus we may and shall

if the given T 1is an Ld system, then

identify P with 2 (P), thus obteining P ¢ P" ; an
% € P 1is identified with the equivalence class containing
(x,0). From (2), T 4s obtained by restriction of T . Since '
(x,0) = (x,0) T 8 from (1), P generates P" in
the sense that P" is the least invariant subset ef P", T
containing P/.

Finally,_dggmaa subset

P*=pP2E! ,
the least + inveriant subset of P™ containing P ; and si-
milarly
P- = PR EL .

Next we shall exhibit some important properties of P"’;-?- .
One of these is that P”" has no further cycles nor critical
points than those already present in P . (The assumption that
T s a d system with upicity on P is preserved.)

Proposition 13. In P" the set P generates P" 1in
the sense that P* = P+ E' | Hence P™ has no further
cycles nor critical points than those already present in P .

(Proof.) In any equivalence class = in P”" gelect some
(X, A); then

(X,A) = (X, 0T A€ (Px(0)+A

%o that 2z = X T A as asserted.

If x ¢ P? is critical or on a cycle, then
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2=2TR!" andaes Just shown, this lstter set must intersect
P; hence z € P, '
Proposition 14. T defines a gsd  system on P+, an
Lo systemon P .
P-P"r\P', P*= P*, P~
P=P* it + isa g»d system, P=P" ift + is
a gd— system.
(Proof.) For the first statement use lemma 5. Second state-
ment: if
x=xT-0e P, xeP, 8> 0,

then 2z $A4 = (xTA)T-8¢€P” for A< x, ; thus

T vrestricted to P~ is an £d system (with 8, = - ).
Obviously P < P*¥ A P~ . For the converse inclusion,

takeany =z ¢ P* A P~ ; then

2> (X, 0) ~ (x/,-8") 8,0z 0 .

?
There are two cases. Either, for some £ with 0= g'< SO
x=a'Tg', 0=-6"-¢€’
The lotter of these implies 8 = 6'= &’ = 0 ’ and thus
z-»(x,0)1s in P. Op
X=xTE, -0=6-¢g, 05 < Xy
so that o£9=€-9'£~5<o<,_x and x T 8 1is
defined, and thus 2 » (X, 60) ~ (x T &, 0) is again 1in
P. T™Tus P* A P~ c P.
The remaining statements have trivial proofs.
Proposition 15. P” , # are determined uniquely in the
following sense. If T 1s a gd system on a set PP
with restriction T , then there exists amap b : P*'— P s
identical on P, and with

(3) Mh(s70)eh(x)+0 fao (x,8)e P s &’
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If, furthernaxe, P=P+ E" i.,6. if P generates P ,

then # is 1-1 onto P.

)

The mroof 1s quite straightfarward: 41 1is obtained by

showing that

hx+e)=xT86, (x,0)e P ET ,
defines a map as required; proposition 13 is used here. The in-
verse map may be defined similarly, if }5 has the indicated
property.

For purposes of reference we collect these results.

Theorem 16, If T isa d e/yatem with unicity on a set
P, then there exists a gd systen T onsset P> P,
such that T 4s a restriction of T and that 13,14,15 held.

Remsrk. It may be shown directly thst the operation o for-
ming P”" extends to a covariant functor on the obvious catego-
ries (morphisms are maps preserving the d system operatars, as
in (3)). Similarly for the operations o farming P* ana P~ .
Corresponding remarks apply to theorem 17 to follow.

(Construction 12 contd.) We proceed to show that theorem 14
may be significantly improved in case that the d system acts
on a topological space.

Assume, then, that there is a topology = on P, compa-
tible with the d system T given initially. Then there is a
neturel certesian topology for Px E’ , and hence a quotient
topology © for P* [1, p.74 ff.]. Since the mapping T
defined ty (1) (beginning of-construction 12) is continuous, the
topology £ 1e compatible with the previously constructed gd
systen T (in definition 6, (i) is trivial for global systems;
continuity is obtained almost directly using the following
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commutative diagram
(Px E")xE'"—>s PxE’

o

PrxE' L= P°
where the verticsl maps are (induced by) the quotient mappings).
The msp o of ccnstruction 12 is easily shown to be interior, se
that, after our identification of P with 2 (P), Pc P" to-
pologically.

Theorem 17. In the situastion of theorem 16, let T be com-
patible with a topology 2+ on P. Then there is a topology +
on P* compatible with both ¥+ and 7 . In proposition 14,

P~ 1s open in P" ; in proposition 15, 4 1s contimuous,
and it P, + have the last-indicated property, 4 is
homeomorphice

(Proaf .) The only non-trivial proof concerns openness of
P~. It is easily established that, in P x E 1, the least sget
saturated with respect to ~~ and containing P x Ei (i.e.
mapped onto P~ ) is

P  w {((x,0): XeP, 0 <yl
By definition of the‘qnotient topology ( 1.c. ), P~ 1is open
in P" it P*™ 1s open in P x E7. Take any (x,0)e€ P“,
and any O’e ET with

mae (0,8) < 8’ < oy
From lemma 7, there is & neighbourhood U ef x in P such
that £, > ' forall ye¥. set V=(-,60’) a
neighbourhood of & in E'.Then U » V is a neighbour-
hood of (X, §), and obviously U x V ¢ P . This

proves P~ 4s open.



Remarks. In the situation of the precseding theorem, from
-
P=PtAaP (proposition 14) it follows that P  1is o-
pen in P* . Thus we have the following diagram of inclusion

maps eme - byl :
+ow -
Local systvms: P—s P
apen oo

glotal ryolms:

P*——— P
+ o

Ia proposition 12, obviously we cannot assert thst P = P~
iff T 1s an 4d system, At least we have
Lomms 18. If T 1s an A£d system with unicity on & tope-
logical space P, then, in construction 12, P 4is open in P~.-
(Preof.) Since P < P7™, it suffices to shew that P
is epen in P . Now, the least subset of F x E’ contai-
ning P x {0} (i.e., mapped onto P c P" ) and
saturated with respect to ~ , is domsin v ; this is -

pen by definition 6.

3. The epenness condi tionj manifolds,

Throughout this section we mske the general sssumption that
there is given a & system T with unicity on a topological
space P ; in psrticuler, then, one has the objects P, T
o construction 12.

It will appesr presently that the condition that P  be
open in P”" (the openness condition) is rather useful in that
it ylelds significant results. In this connection we already ha-
ve (17 end 18) that P is open in P”" if 1 is an Ld sys-
tem, From the main result of this section (theorem 25) it foll-

ows that the openneas condition does obtain if P 1is an
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n-manifold.
From construction 12 we recall that

. P
(4) P =, U, 6

Proposition 19. If P is open in P" then P" is lo-
cally homeomorphic to P . N

(Proof.) For fixed 6 € E” | the map taking x € P" to
X T @ 4s & homeomorphism P =~ P* ( x> x T -6 is
the inverse mapping). Thus, first, P 4is homeomorphic to
P26 , end second, P+ 6 1s open if P 1is open; in
particular, (4) is an open cover of P~ .

Corollary 20. Let P be open in P*.If P is T, o
T, or Te or sn 7 -manifold, then so is P" .

(Proof.) Each of the listed properties obtains iff it obtains
locally; then apply proposition 19. In the case that P is an
m - menifold, this ressoning yields that P~" is locally E™.
To show that then P”" 4s T, (and hence an 7 -manifold),
proceed thus: P 1s en n-menifold, hence '!; ; then P 1s

'I;. , hence T, . This comple tes the proof. ‘

2
I do not know whether P" 48 T, if P 1is such.
Lemma 21. Let G be open in P and A c e’ arbitrary.

Then G v A 1isopen in P ifeither T 1is an £d system
@ Ac El and P 1is open in° P" .
(Proof.) Since G T A =9LJA GTé , it suffices to
€

prove G T O is open. In either case P 1is open in P* , 80

that G 18 open in P" and hence G + & is aleo such.
)

‘Therefore it suffices to prove the formula
Gr6 = PAC(CG+8).

Obvicusly the left side is a subset of the right one. Teke
xe PA(G T 6). Thus there eddst x € G, y e P with
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(x,8)~(1y,0) end we are to prove that X T §  1is defi-
ned, since then (x,80)~ (x.76,0)e G 76 . There are
two cases, according as 6 2 0 or <0 -

It 6 >0, thenfrom (x,68)~ (g, 0) there fol-
lows ry:.x-rg’o-‘e—e,i.e. ry,:.x're is indeed
defined, If & < 0 we have similarly x = %4 T - 6§

(this is the case when T is an {£d system); then, from lem-
me 3, ‘

ﬂxa/ly-c-ec 6 <0< £,

end thus x T 6 is again defined. This completes the proof.

Remerk. This result was proved in [5]for the special case
that T is an £d system on en % -menifold., Thus this se-
cond assumption is unnecessary.

Proposition 22, If P is open in P" sand compact then
P=P"

(Proof.) By sssumption, then, P is open-closed in P* .
Any x € P* is of the form x = X T & for sore x € P,
6eE’ , 80 that it is in the seme component of P" as X ;
hence = 1s in the same "composente" as x, i.e. in P . Thus
P* = P .

Example 23. There exist gxad systems T on metric P
such that P is not open in any topological space & o> P
on which there is a gd system with restriction T .

on <0,1>c e’ teke the gsd system genersted
by the motion of a point, initially et 71 , moving towards 0
with suitably decreasing velocity. Thus x T 8 might be de-
fined as X /(1 + 0x) for 0= x=1, 6§20 . Now
assume there is a topological space & o> P such that P
is open in G end that there is 8 gd system T onQwith
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restriction T . Since P isopenin & , T defines an
£d system on P which again is an extension of T . Since
1 is not criticsl, there 1s anarc, say 1 T (-€, € ) in
P with 1 as interior point; tut 1 1is en end-point in P:
contradiction,

Lemma 24. If P isopenin P" and P" 1s compact, then
pP=P" .

(Proof.) By assumption, then,(4) is an open cover of a com-
pact P". Thus, for some &,,..., 6, in E? ’
(5) P* a U™ P ¢+ 6, -
Now we shell prove Xy = + 0O for all X € P . Let
=1+ mac 8 ; then

P *«P*$-0=U"P%- ¢,

Thus for every X € P c P” thereis an ye P with
(x, 0)~ (y,- €,);hence 4 = X T €4 , so that

€h>0.

€, < o, , and therefore
‘ 0 < min g, < x  forall xe P .
Now, if we had o, < + oo for some X € P, then
0 <oy ,g=o%-6—>0 with 6 — o, (lemma 3);
this would contradict the last displayed relstion. Thus
oc‘x = + oo
Next, set 6’ = min 85 ; from (5) ,
P'= P"+ -0 = U " P+ -€, 5 E>0.
However, from o«, = + oo there follows P + eL =
Pregc P, end therefore P* = U™ P?7 ¢ c P.
This concludes the proof.
Remark. This result also holds for P* qiasi-compact
[1, p.113].
Theorem 25. Let T be a d system with unicity on an
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n-wmanifold P . Then P" is an m- manifold, end P is open
in P* .
(Proof.) From corollary 20 it follows that it suffices to -
prove P is open in P”. It is easily shown that in P » E ',
the lesst set containing P = {0} and seturated with res-
pect to ~ (cf.construction 12) is V
Pr={(xTe,-€):xeP, 0 g }fu {(x,€): "‘Eea‘f“ﬁ};
80 that, ss before, P 4isopen in P* iff P’ 1s open in .
P x E1.To show this last, take any (X,E)€ P x E? with
0 € €< o, ; then
(6) (x, &), (xT€, ~E)
are general elements of P". Teke A with € < A < «, ,and
an open neighbourhood U of X 4n P with U x <0, A > ¢
c domein T (cf. lemms 7). Define amap 4o : Usx (- X, A)-»Px e? .
(here (=A , A ) 1is the open segment) by
/a,,ai if 6320
h (Iy, )= Q
(y76,-6) if o< 0.
Eesily, 4 is continuous and 41 ~ 1 into PY ; also,
Ux A, &) is open in the (M+4)-maniipm PxE? ,
80 that, by the Preservation of Domain Theorem, 41 is a homeo-
morphism and imege 4 is open. Obviously, both the points (6)
are in imsge 4 ; thus PY 1s indeed open. This concludes the
proof.
Corollary 26. If T is an £Isd system with unicity on an
7 - manifold P, then there is a unique méximal £d system on
P itself with restriction T .
(Existence follows from 17,25 and 10; unicity from 17.)
Corollary 27. If T 4is an Uad system with unicity on 8
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closed m-manifold P, then it 1s a gsod system end there
is a unique gd system on P itself with restriction T -
(Use 9,17,25 and 22.)

Finally, thearem 25 makes it possible to apply known results
on the structure of 9d systems to {sd systems.

Theorem 28. Let T be an 4£od system with unicity on a

2-menifold P; let X, € P be non-critical. Then there
exists a simple arc S in P enda A >0 smsch that, for
0 6 =24, St6 aredisjoint simple arcs, x, € S T4,
ST<0,22) 4sa neighbourhood of X, -
(Proof.) From 25, P” is a 2- manifold and P 1is open in
P”, from 13, X, 1s non-critical in P", T . Now apply the
Whitney-Bebutov theorem (e.g.,[4], theorem 2), taking initially
a neighbourhood of x, € P ¢ P* small encugh to be inclu-
ded in P . Then use [1l.c., theorem 1] to show that S 1is a
simple arc, concluding the proof.

For semi-systems T on P we may define S~ points as
those points of P  which are not of the form x T @ for
eny x € P, 8 > 0 . Thus from theorem 28 it follows that
every Asol system with unicity on an 7-manifold has no
S - points, Howe;rer, a stronger conclusion may be had,

An 7n-mwmenifold with boundarv (the term used, for m = 2 ,
in [7] is merely 2- msnifold) isa T, spsce such that every
point is on some homeomorphic image of an euclidean m - simplex
sﬁ
then a point without neighbourhoods homeomorphic to E™ .

Proposition 29. Let T be an {od system with unicity on
an m-manifold with boundsry P. Then every S- point of P T

whose interior maps onto an open set; a boundary point is

is & boundary point of P ; for every nonscritical nen - S -
"point x, € P (even if it is a boundary point) the conclusion
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of 28 obtain.

(Proof.) If x € P is not a boundary point, it has an
open neighbourhood U  homeomorphic to E’"’, from lemma 10,
T induceson U an ALed system with unicity, to which
we may then apply theorem 28.

A another application of these results, let us determine
all 4sd systems with unicity on 4 - manifolds. Obviously
we need consider only connected 41- man'ifolda; topologicsl-
ly, there are only two of these: euclidean E?" am the 1-
sphere 51 .

Exsmple 30. First consider only ¢gd systems. On E 7 R
these are characterised easily: each x T & (fixed x ),
if non-constant, is strictly monotonous, so that each non-em-
pty limit set is a single critical p;:int (in particular, the-
re are no cycles). Thus one chooses an srbitrary closed Fc
c E1 as the critical points, and for each contiguous inter-
val J, an erbitrery strictly monotone map of E' onto J 2
to determine motion within J (if ¢ 1is such a function,
then x 106 = @ (6+gcxn).

The (elementary) proofs of those statements closely paral-
lel the complete discussion of solutions of the equation
dy /dx = 'F(y.) in one scalar unknown with ¥  continuous
bounded.

Similarly for gd systems on S?1  either S’v is it-
self a complete cycle, or there is a critical point Xx € st,
whereupon on S’ - x =~ E’ there is induced a g
system which may then be treated as above.

This edsblished, we may characterise all od systems
with unicity on E" and S . To this end it suffices to de-
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" termine the associated spsce P”* in both cases, snd then ap-

ply theorem 17. From 26 and 22, (S™)* « S* | and 27 may

be used.'As concerns ( E")* it 1s en 1 - manifold (theorem

26), but not S? (lemma 24). Thus (E")* = E’  with the

originael space as an open subsegment. ’
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