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Commentationes Mathematicae Universitatis Carolinae
&, 1 (1965)

ON TENSOR PRODUCTS OF ABELIAN GROUPS
S. TOMASEK, Liberec

§ 1.

In this paper we shall consider Abelian groups only. The
group operation we denote by addition. Z means the ring of
all integers. Any Abelian group G 1is considered as a module
with respect to the operation of multiplication (m,x)—> mx
for arbitrary m in Z and X in G . A mapping f ofa
group G into a group K is called Z -linear if f(x+4y)=’
=f(x) + f(y) for every x in G and 4 in G. Similar-
ly we define a Z =-bilinear mapping.

If ¢ and K are Abelia/n groups we denote by ¢ & K
their tensor product. Any element x in G ® K 1is of the form
(see [1))

L= X @y, +... Xy @ Yy
where X; isin G(1s 1t sm), gy, in K(1 <71 s 7n)
and m 1is an arbitrary integer. Similarly we denote for a sub-
set A of G, B subset of K, by A® B the set of all
x®Y €G®K , where X is'in A, 4 in B -

For our further discussion we shall assume that &G and K
are topological Abelian groups, {U} and {V} mean the systems
of all neighborhoods of zero element in G and K -

For any U €{U}], Ve{V} and for any positive integer n

we define: . .
(1) H;‘v= {zeGO®K; 'nze_Z" U: @V, Y=V, U =Ucisn}
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Proof. If =z, 1is in 'Q‘u.,v’ z, in {1y , then there

exist two integers m, m satisfying n%¥,; = X, ® ¥, +
e T X, @Y, M) =X @y + .0 + R ® Yl
for suitable x; €U, Y, e V(1cién) xe U YeVd1siem).

Making use of the equality
2mm(zy+2,)= m[(2X)® y, +-- +(2.xn)®/y,,3+m[(2x,')ety,'+...+

. 2nm +(2x,. )0 8. ]
we prove z, + %, € Hur,v s “Q‘w,v .
Hence the collection {_qu; Ue{Ui , Ve{vi} satis=

fies evidently therefore the axioms of a group topology in the
tensor product G ® K.

Definition 1. The topolcgy in G ® K  defined by
{ﬂu'v; Uefui, VeliVi ) is called the tensor
product topology and is denoted by IT.

In the tensor product G oK it will be considered
throughout this paper the topology Ir only.

Remark 1. a) Every neighborhood of the form (2) has the
" following property: mx € ﬂ-u’v for a givenzeG® K
and some positive integer .  implies =x € ‘Qu,v .

b) If G 41is a discrete group, .Q_{”,V consists ex-
actly of all cyelic elements of G &® K -

c) The canonical Z =-bilinear mapping (x,y) —>x ® ¥
of G xK' into G ® K is continuous in (0,0) . The Z -
linear mapping X — X ® 4 of G into G ® K is not
continuous in general (e.g. if R is the additive group of
r§31 numbers with the natural topology, K a discrete group

with @ finite basis {€;};., , thenx—=>x®¢ (161 & m)
" of R into R ® K is not continuous).
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In the following proposition we shall establish a suffi-
cient condition for the continuity of (x,4) —> x @ 4 . An
element X in G will be termed bounded if for every U e{U}
there exists an integer m >0  sgatisfying x e n U .

Proposition 1. Let G and K be two topological groups,
$ Z -bilinear mapping of G x K into a topological group
H continuous in (0, 0) . Then f 4is continmous in every
point (x,, 4, ), where X, is a bounded element in G, %,

a bounded element in K .
Proof. Let W and W, be two neighborhoods of zero element
inH, W +W, tw s W. There exist neighborhoods U,
Vi in G, K such that f(Y,Y%)s W . For some
m, m hold x,enlU,, Y, em V, and we choose neighbor-
hoods U, V in 6, K satisfying U+...+ U € U,
(m summands), V+... + Vs V (m summands). For
(w,w)eUx V 1t follows f (X,+u,y, +v) ~F(x,,Y,)=
=80, ) + fuw, Yo )+ F(u,v) isin W+ W, + W, & W.
Remark 2. A similar result holds for the Z =-linear mapp~-

ing x — f(x, Yo ) of @ into H, where 4, is boun-
ded in K . ,
Detinition 2. We shall say that a subset A 91‘ an Abelien‘
group G is convex in G if Z €A for any x € G satis-
fying k-2 €A+ .. + A (& summands) for some Je.

A topological group having a fundsmental system of convex neigh-
borhoods is called locally convex.

A quotient group G'/ G, of a locally convex group E
need not be locally convex (e.g. additive group of real numbers
modulo 1 4s not locally convex).

Propositign 2.a) A subgroup of a locally convex group is
locally convex.

R

-T5 =



b) If G 1s a locally convex group, &; a disivible sub~
group of G (i.e. for any ye G, and n € £ there ex-
ists fy'e G, with ﬂ.'y'a 4 ), then the quotient group
.G'/G; is locally convex.

) If G, (11 £ m) are locally convex groups, then
the direct product G = _it G. is locally convex.
Proof. The statements a) and c) are evident. In order to prove
b), we take an arbitrary neighborhood g(U) of zero ele-
ment in G/G-, , where & is the canonical mapping G —

—9G/Cr°,1f mgz)e ¢ (U)+..+ g (U) (n summands),

then mx =X, +... +X_+ 4 for some x;, e U(1$Z ¢ m),
4y€G . For x,eG,, m.x,= 4 , from the equality
Mm(x = X )= Xy 4 oee + X, it follows z - x, e U and

9(2)=qg(z -x,) isin g (U)-

Theorem 1. The topology 771 in G ® K  is locally convex.
The proof is evident.

Remark 3. If G is a topological group with the topology
T, then there exists a finest locally convex topology <z *

which is coarser than < . The fundamental system of neighbor-

hoods for T* can be defined by co—(u)='£/: K: , wkere
’K:-{zeG-;m.-zEU*---. + U (m summends)}, m =
=1,2,... ; and U € {Uf . The propositiofdl of [3] is also
true for-the topology 7T.

Exampleg. 1. Let D be the group of . -adic numbers
(see [2];(3], § 3) with the topology % (see [3], § 3). Then

't'* is clearly the trivial topology, hence the tensor product

topology f in D@ D is also trivial.
2, Let K be the multiplicative group of complex numbers. For
any neighborhood U, = {ze K; Ix -1l< €} »we have

N
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cwo(Ug)={zeK;1-E<lxl<1+ £} . In particular if = is
the usual topology (see [2]) in the additive group R/Z of
the real numbers modulo 1, then T* 1is a trivial topology
and hence the tensor product topology in (R/Z) G(R/Z) is
also trivial.

. Theorem 2. Let G and K be two topological Abelian
groups. On the tensor product G @ K there exists a unique
locally convex topology with the properties .
(a) The canonical Z =bilinear mapping (X, y)—> X @ 4 is
continuous in ®0, 0) .

(b)If H 4is a locally convex group,then the canonical isomorph-

ism of the group £ (G,K; H) of all Z ~bilinear mapp-
ings G x K—> H  onto the group £ (G @ K; H) of all
Z -linear mappings G ® K — H defines an isomorphism

of the group B (G,K; H) of all continuous in (0, 0)

Z =bilinear mappings G x K—> H onto the group B(G® K; H)
of all continuous Z =linear mappings G ® K — H .
Proof. Let the image of fe £ (G, K ;H ) in ¥(G® K; H)
under the canonical isomorphism be denoted by £* .1t suffices
to prove that f € B (G, K ; H) implies f¥¢ B(G ® K; H).
For any convex neighborhood W of zero element in H there
exist neighborhoods U, V in G, K such that f(U,V)s W.
For'ze.flu’,,- we have nz e U® V+... + U@ V
(mn summands)for a suitable m; from mf*(z)=f*mnz)e
et (U@ V)+...+f*(U® V) 1t follows that £*(z)€é W . The u-
niqueness of such a topology is cleer.

For the topology ¥ in G ® K . are true propositions 2
and 4 of [3]. If G and K are Abelian groups, G’ and K’
subgroups in G and K, then the tensor products G‘K/P(G',K’)
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(re’, K) means the sdbgroup in G ® K  gem=~
rated by the set of all x Oy, X isin G’ or y 1is
“4n K‘ ) and (G/G-' e (k') are z -isomorphic (see [1]),
but the canonical mapping ¢ of ¢® K/F(G-' K’) onto

( ® ( /K’) is not open in g,eneral. For example let &
be the additive group of real numbers, &’ the additive sub-
group of integers, K a discrete group with a finite basis.
Then G ® K ana 99 K/F(G-', 0) are discrete. The to-
pology of (G/G') ® K is not discrete. This proyes that
propositions 3 and 4 of [3] are false for the topolégy JT.

By an annihilator (see [4]) of the group K in & we
mean the set of all elements X € G such that x @ 4 ~ 0
for every 4 € K.

Proposition 3. Let G and K be two Abelian groups,G’
a subgroup in G contained in the annihilatarof the group K
in G, K’ a subgroup in K contained in the annihilator
of the group G in K . Then the canonical Z -isomorphism

$ of G ® K onto (6/6') ®( K/K') is a topological
isomorphism.
Proof. It is evident that $: x @y —~> 9(.::) e yv(y) ,
where ¢¢ and y are canonical mappings of G —» G/6*
anda K — Ky K' is continuous. It suffices to prove
that $ 1is open.
s G, K

Let,> g (%)@ y(y)e(76’) ®("/k’) be an arbitrary
element in, ‘Q'q(u),r(‘lr) . There exist an integer 7
-nd mygel, v; ¢ V(161 ¢ n) such that
- A(Xq(ag)Oy(y‘))- Z Fw)Iey (v;) - We set z =

- 2 X, @Y,y W= mx - %u ® v - From g(w-) dnx)-

—Q(fuq )-6(29(-*,)0?(%)) giq(amwww
it fol_lou wa= 0,  hence
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nx =i§(a{®l§)s‘UOV+...+ Ue® V (n summands).,

This proves d (.O.u'v) 2 'n'qm),vﬁr) .

Remark 4. It was mentioned that G @ K  is not separated
in general. If we denote by I the closure of zero element in
G ® K , then the quotient group (G ® K)/ is separated.
It can be shown that (G ® K)/r, is locally convex. We can
therefore extend some results of this § to the case of (G ® K)4,‘-

The following statement seems to be interesting: Let G; ,
K; (L =1,2) be four Abelian groups, 4« and 7 oconti-
nuous Z -linear open mappings of G, onto G, and of Ky
onto K, . We suppose next that G, (or K; ) is divisible
(i.e. for any 4 6 Gy and any m € Z  there exists g's Gy
with my‘'=4 ). Then the mapping (4 @v)r:" of (6, ® K,)/P’
onto (G, ® K, )/f':. obtained by factorization of « ® v ig

open ( [; (f=1,2) 4s the closure of zero element in

G; ®.K‘; (i=1,2) ).

The proof of this statement d_oes not present any difficulty.
Remark 5. We can construct the completion G & K of
e K)/p . It is easy to see that G ® K is locally con=-
vex whenever G or K is divisible.

§ 2.

In this section ( means the field of rational, real or
complex numbers. The unit element of C will be denoted by 1.
Ye recall that for any X = 4, @ X, +.+A ® Xn ofC @G
a multiplication by a scalar A € c can be defined in the
following manner (see [1]): -

(3) A,_z.3,11®x1+...+x2.“®*ﬂ .
In case C is the field of rational numbers, every element

2z € C®G  is of the form (see [1]) z = X' ® 4, wiere
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Definition 3. Let E be a vector space over C . We shall
say that E is a general topological vector space (abbrevia-
ted g.-space) if E 1s a topological space and

(a) (x,9) > X + is continuous in E x E
(b) (A,x)—> Ax i1s continuous in (0,0)eC x E
(¢) X~>»AX  is continuous in 0 € E e every Ael.

It can be shown that a topology of a g.—a'pece is descri-
bed by a basis of a filter & in E satisfying
(@) Ue ¥, A€(, IAl$1 imly AUs U ,
(b’) for any U € &  there exists V& F  such that
v+Ve U,
(¢Vif UeF, AeC , then AV € U  for some Ve F.
Similarly we define a locally convex' g -space.

Proposition 4. Let G be a topological group, C( the
field of rational, real or complex numbers wih the natural to=-
pology. Then the tensor product C @ G with respect to the
topology JTr 1s a g ~-space. If every neighborhood of zero ele=~
ment in G generates G , then C ® G is a topological véc-
tor space.

Proof. In order to prove that C ® G is a g -space if suf-
fices to show (a’) and (¢) « If U={A€(;IAl&€ €} then for
any neighborhood V  of zero element in G  holds

A'Qu,v € ‘n'u,v :
Similarly -A .rzmr s ‘Q'u,zr for AW s U, It remains
to prove that, if G 4s generated by V , for averyz e (@G
there exists A € C  gatisfying A-x € -Q-u,,v' ‘ 1
Obviously we may assume that V 4is a symmetric neighborhood in
G.Let z =A@y +...v+Q, @ Ya be an element of
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C®G. Bvery o, (16 i € m)  1s of the forn

LY
= Yyteeot 4 C  , where /y'.‘e V(e n gk, 16{ & n).
We choose A € C satisfying A A, eU(M1¢i &n ) and put
=R, +...+ &k, . From x-tf‘aa{@ry‘ deUVh..+UsV
(4 summands) it follows A - ,ft. X € H:""v, s 'Qu,V »

n
where H‘u,zr is defined in (1).
Proposition 5. For any topological group G there exists

a Z -linear and continuous mapping onto a aubgroup of a leocal-
ly convex g -space. ir G sia generated by every neighborhood
of zero element, we can replace ¢ =space in the first asger-
tion by & locally convex vector aspace.
Proof. We define a mapping ¢ of G into C@® G by
(4) g(x) =18

for any x € G . The mapping ¢ 1is clearly Z -linear amd
continuous. The rest of the proof follows from Proposition 4
and from Theorem 1 (see also § 1 of [3]).

If G is a torsion-free group, C the field of rational
numbers, then the mapping (4) is a Z =-isomorphism (see [1]).

Theorem 3. Let G be a locally convex torsion-free Abelian
group, C the field of rational numbers with the matural topo=-
logy. Then the mapping (4) is a topological Z -isomorphism of
G into C® G .
Proof. It suffices to prove that & 1is an epen mapping. Let
-Q-u'v be an arbitrary neighborhood of zero element in
C ® G . Ve may suppose that U 1is of the form U=
={neC;lnl & k" } , where & 1s an integr, am V is
a symmetric cqnvei neighborhood of zero element in & .
We shall prove that ﬂu,vn 9(G) S (V) . Letz=1® X
be an arbitrary element in 2, , N ¢ (G) . There exist
n,elU, x.,e V(1¢ i €n)_ suchthat
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. (5) M1 @x)w @ X +:-0+4, OX, .
If we put rr.,L-""/mi (1441 é m), were m; and m;
(16 1i & m) eare integrs, then lkn l&lm | (16 i&n).

-1 -1
From (5) it follows 1@nxam OEn X +...+ m O M X, *

m
Putting fo = T m, . the equali‘ty :
1@onnx = 1 @ﬂ,m;'ﬁx4+...+ 1@n, m, X, implies

maxs= 01.11'(1'1;;(‘4-...-0- m.“m‘: f+ X, ; hence, with respect to
the relations lkn 1&lm ;1 (16 i €n), we obtain knpn-
xeV+...+ V (n summends). From the convexi-
ty of V it followe x € V . This concludes the proof.
M@_. Ir G- is a separated locally convex
group, C the field of rational numbers with the natural to-
pology, then C ® G is a separated locally convex group.
Proof. It is evident that G 4is torsion-free. If O+ z €
€ (@ 6 , then we may suppose that x»x ® x, O+ 2 € (),
O#xe G. We define a neighborhood U= {A6(;lA1& 1}
in C and choose a symmetric neighborhood V in G not con=-
taining X . Ve shali prove that z 1is not contained in
-Q.u'v. - Suppose, to the contrary, that = is in.Q, .-
Then for some Ag-h‘m:fM‘t sm), X, €« V(1¢i&n)
holds MA@ X)mA ®X+...+A ® X ; from nk . m1® x =
-n'o k&, X4 eeot m @ do, X, , wiere 2w om”,
it follows mhm,...-m Xemh m ... 'm X+t R mme.. 0 X .
Kaking use of Ib{m|$|m{bl, (16€i € m ), we conclude
m.hm’-...m“ch+... +V (mhm...om,  summands), hence
xeV.
If G 1ie an Abelian group, H a vector space over C,f
a Z -linear mapping of 6 into H | then there exists

(see (1)) a C-linear mapping ¢ of C® G into H
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defined by. :
(6) gA@x)= A-f(x).

Proposition 7. Let & be a topological Abelian group, H
a locally convex @ -space over C, ¢ a Z -linear con-
tinuous mapping of G into M. Then the mapping -3 defined
by (6) is continuous. .
Proof. Let W Dbe a convex neighborhood in H satisfying
AWeW forany AeC, LAIS 1. There exists a :
neighborhood V in G, f(V) & W . It is easy to prove that
g-f.ﬂ.u,v).‘-.‘-W, where U = {A&C; Ixl & 1% .

Theoorem 4. On the tensor product C @ G there exists
a unique locally eonvex topology with the properties o
(a) The canonical mapping X —>@(X)=1® X of G into
C@C is continuous ; . )
(b) For any locally convex ¢ —space H and for any conti-
nuous Z -linear mapping ¥ of G into H , the mepping g
defined in (6) is a continuous ( -linear mapping of C @ G
into H .
The proof of this statement is evident.
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