
Commentationes Mathematicae Universitatis Carolinae

Stanislav Tomášek
On tensor products of Abelian groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 1, 73--83

Persistent URL: http://dml.cz/dmlcz/104995

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/104995
http://project.dml.cz


Commentationes Mathematicae Univereitatis Carolinae 

6, 1 (1965) 

ON TENSOR PRODUCTS OF ABELIAN GROUPS 

S. TOMiSEK, Liberec 

§ 1. 

In this paper we shall consider Abelian groups only. The 

group operation we denote by addition. Z means the ring of 

all integers. Any Abelian group G is considered as a module 

with respect to the operation of multiplication (<n,7 .x ) —» mx 

for arbitrary n in 2 and * in G . A mapping f of a 

group G into a group K is called Z -linear if f f-x + y ) * 

-4(x) -.- 4(<y) for every *x in G and (tf in G. Similar­

ly we define a Z -bilinear mapping. 

If G and K are Abelian groups we denote by (r ® K 

their tensor product. Any element x in G <S> K is of the form 

(see [1]) 
X = JC1 <S> «ji + • • • + •*«. # K*t > 

where o^ i s i n G- M « •£ « *n ) , ^ in K C'f ^ t ^ ?i ) 

and i*t i s an a r b i t r a r y in t ege r . S imi la r ly we denote fo r a sub­

set A of <J j B subset of K, by A <g) B the se t of a l l 

:x & ^ € G ® K ., where A i s in A 7 if in 8 • 

For our fu r the r d iscuss ion we s h a l l assume tha t 6- and K 

are topo logica l Abelian groups, {U] and {V} mean the systems 

of a l l neighborhoods of zero element in G and K -

For any U e{U] , Ve{V} and fo r any po s i t i ve in t ege r n 

we def ine : 

(1) l £ * { * € © • . < 5 * * e - 2 U.® Vi9 q.VtUi-UiUitnt 
v.fir ^m<\ 
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(2) J l „ v - U H ? . 

Lemma. For U c { U ? , We{tf?,V€{V? a n d
 u+ U£ W hoXds 

Proof. If Xj i s in / l ^ ^ z^ ±n JlUtV- , then there 

e x i s t two integers /rt, nrt sat is fy ing /*--&---» ^ <g> ̂  + 

+ ••• ^ ^ ® ^ , / m . x ^ . ^ <g>,y; + . . ^ * ^ <S> y ^ 

for suitabie J ^ <f U, yi e V(1 * i*<n)f^€ U,Vf€ V(1*i4<m). 

Making use of the equaiity 

we prove z-, + s* € H ^ s J L ^ ^ . 

Hence the coiXection {A^vi
 U^{U} , V e{Vf } s a t i s ­

f i e s evidently therefore the axioms of a group topoXogy in the 

tensor product (J ® K . 

Definit ion X. The topology in G & K defined by 

i&uv', Ue[U], Ve{Vi \ i s caXXed the tensor 

product topoXogy and i s denoted by ft . 

In the tensor product G <S> K i t wiXX be considered 

throughout t h i s paper the topoXogy trr onXy. 

Remark X. a) Every neighborhood of the form (2) has the 

foiXowing property: *i%. <s -0~u for a given z.eG*> K 

and some posi t ive integer m impiies x e Stu ^ * 

b) If G i s a discrete group, -A/0* y consists ex­

act ly of aXX cyc i ic elements of G G> K . 

c) The canonical 2 -b i i inear mapping f.x-'y) —> * • 1* 

of (x x K into (r ® K i s continuous in (0,0) . The Z -

l inear mapping x - * x ® ^ of G into Cr « K i s not 

continuous in general ( e . g . i f R i s the additive group of 

rea l numbers with the natural topology, K a discrete group 

with a f i n i t e basis { et \?mA f t h e n *->x <g> 4+ (1 * i * *) 

of R into R ® K ia not continuous). 
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In the following proposition we shall establish a suffi­

cient condition for the continuity of (*,y) —* «x 0 y . An 

element »x in <J will be termed bounded if for every U e{UJ 

there exists an integer <n > 0 satisfying %x e n U . 

Proposition 1. Let <r and K be two topological groups, 

f Z -bilinear mapping of (f x K into a topological "group 

H continuous in C 0 , 0 ) . Then f is continuous in every 

point Oc0 , *y0 ) , where * 0 is a bounded element in G-; ^ 

a bounded element in K . 

Proof. Let W and Vv̂  be two neighborhoods of zero element 

in H, ^ + WJ + V^ s i/if . There exist neighborhoods Uf, 

VJ, in G-, K auch that f (U, , K, ) s W - For some 

ia, m hold JC0 € -n (i. , ^„ 6 *n V̂  and we choose neighbor­

hoods U , V in <x, K satisfying U + + U € U, 

( m summands), V + - - • + V s Vi ( n summands). For 

(44,, v) e U x V it follows f (*0 + 4*,<yo + v ) ~f f^-V^ 3" 

» fCx,,v) + ffo-o^J+f Gujir- ) is in V^ + V^ + V/, fi W . 

Remark 2. A similar result holds for the Z -linear mapp­

ing x — ^ f C - x , ^ * " ) of <r int o H ; where /y0 is boun-

ded in K . 

definition 2. We shall say that a subset A of an Abelian 

group G is convex in G- if it 6 A for any z, € <r satis­

fying A - * c A -h ., +• A {ft summands) for some A . 

A topological group having a fundamental system of convex neigh­

borhoods is called locally convex. 

A quotient group /G0 of a locally convex group G 

need not be locally convex (e.g. additive group of real numbers 

modulo ^ is not locally convex). 

Proposition 2.a) A subgroup of a locally convex group is 

locally convex. 
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b) If G i s a l oca l l y convex group, G-0 a d i s i v i b l e sub­

group of G ( i . e . for any <y e G-0 and -n. € Z there ex­

i s t s <y' e &„ with n*tj'» y ) , then the quotient group 

/Gl i s l o c a l l y convex. 

c) If Gjfd£i4'n) are loca l ly convex groups, then 
ft 

the d irect product G = .TT G-̂  i s l o c a l l y convex. 

Proof. The statements a) and c) are evident. In order to prove 

b ) , we take an arbitrary neighborhood <y(U) of zero e l e ­

ment in /G0 ? where 91 i s the canonical mapping <r—> 

-> ^/(r . I f / n ^ i ' x ) f 9 f(1)-f- . . + 9 (U) ( n summands), 

then mot » ^ 1 -*- . . . -f- jc^ -j- <%. for some o^ e U (1 & t 4 <n ) , 

<y € (r0 . For -̂ 0 6 (-f0 , *t . xo -* ^ - from the equality 

zn Cx - x 0 ) « •K1 4- . . . -i- .x^ i t follows z - x 0 € U and 

9 f x ) » 9>(i - ^0 ) i s in cp (U) • 

Theorem 1. The topology yr in (r ® K i s l o c a l l y convex. 

The proof i s evident. 

Remark 3 . If G i s a topological group with the topology 

f f then there ex i s t s a f ines t loca l ly convex topology - r * 

which i s coarser than tf . The fundamental system of neighbor-
oo ^ 

hoods for t r * can be defined by c t r ^ ) * t / K where 

* £ • {zeG; nx-xe U+... -*- U ( ^ summards)}, * « 

*1fZ9... ; and U € { U | . The proposit ion! of [3J i s also 

true for the topology TC . 

Examples. 1. Let D be the group of 'ft -ad ic numbers 

(see [2J; [ 3 ] , § 3) with the topology f (see f 3J , § 3 ) . Then 

f i s c learly the t r i v i a l topology, hence the tensor product 

topology ft i n D <& B i s a lso t r i v i a l . 

2 . Let K be the mult ipl icative group of complex numbers. For 

aay neighborhood U£ -» {x e K* I* - 11 < 6 J *we have 
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<ur(Ue)**{z,€ K ; 1-6. <\oc I < 1 + £ ? . In particu lar i f f i s 
D 

the usual topology (see f2j) in the add i t ive group /Z of 

the rea l numbers modulo 1 , then r * i s a t r i v i a l topology 

and hence the tensor product topology in 1 /z) ® i /Z ) i s 

also t r i v i a l . 

Theorem 2 . Let G and K be two topological Abelian 

groups. On the tensor product G # K there ex i s t s a unique 

loca l ly convex topology with the properties 

(a) The canonical 2 - b i l i n e a r mapping ( x , *y )—* x ® ^ i s 

continuous in («0, 0 ) • 

(b ) l f H i s a l oca l l y convex group,then the canonical isomorph­

ism of the group *C (G7 K ; H ) of a l l Z -b i l inear mapp­

ings G x K —* H onto the group -sd f(x ® K; H ) of a l l 

Z - l inear mappings (r ® K —> H defines an isomorphism 

of the group ft (G , K ; H ) of a l l continuous in C 0, 0 ) 

Z -b i l inear mappings G- x K —> H onto the group &((i<& K; H) 

of a l l continuous Z - l inear mappings <r <S> K —• H * 

Proof. Let the image of f e X CG, K ; H ) in ^ CG1 <S> K; H ) 

under the canonical isomorphism be denoted by -P* . I t su f f i ces 

to prove that f e ft (G , K ; H ) imp l ies **€ #f(x ® K; H ). 

For any convex neighborhood W of zero element in H there 

exist neighborhoods U , V in (?, K such that •frU ;lj)£ W. 

For x € SLU „. we have mx £U®V + . . . + U<&V 

( n summands)for a su i tab l e ^ ; from *if*Cx )-» ^*(Vi» ) € 

€**CU# V)+... + f*(U0 V) i t follows that f*C*.)6 IV . The u-

niqueness of such a topology i s c lear. 

For the topology ff in <f 0 K > are true propositions 2 

and 4 of f 3 j . I f <r and K are Abelian groups, Cr' and K' 

subgroups in G and K , then the tensor products /r((rtK') 
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( P (G' j K' ) means the sdbgroup in G <& K gene­

rated by the set of all x ® y , .x la ±n G' or y is 

in K< ) and (°/G') ® (K/K') are Z -isomorphic (see [lj ), 

but the canonical mapping $ of /P(G', K') onto 

( /(r') ® v /K') is no-t open in general. For example let G 

be the additive group of real numbers, G' the additive sub­

group of integers, K a discrete group with a finite basis. 

Then G 0 K and & ® K/T(G',0) are discrete. The to­

pology of ( /G') <S? K is not discrete. This proves that 

propositions 3 and 4 of f 3j are false for the topoldgy 3T. 

By an annihilator (see [4j) of the group K in G we 

mean the set of all elements x e G such that x ® <y m 0 

for every <y e K . 

Proposition 3. Let G and K be two Abelian groups,G' 

a subgroup in G contained in the annihilator of the group K 

in G , K' a subgroup in K contained in the annihilator 

of the group G in K . Then the canonical Z.-isomorphism 

$ of G <g> K onto (Q/G') <*( K/K' ) is a topological 

isomorphism. 

Proof. I t i s evident that $ : x ® y-> <? (x) G> y (y ) , 

where <f and Y a r e canonical mappings of & -> /G' 

and K —> K / K' # i s continuous. I t suffices to prove 

that $ i s open. 

Let 2 q (Xi)Q¥(<yi)e(6/&') &( K/K') be an arbitrary 
» * *i 

element in, SL (u^ w (V) * There exist an integer n 

and A4>i e U , y ; g V (4 4 i * n ) such that 

^^Hcf(xt)0f(yi))m <£ <?<4JLi)® Y (vi > • We set x *• 
* F * ^ * * Sk 

m Jr Xi m ii > «r* <n.z. - 2 u*i a n • From #A^>-#6t*>-

- * < & ^ 4 • <?>-"-{ik?**)•*'¥«»-J*9(«i)<8>r(vt)*o 
i t follows w« . 0 , hence 
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* . * -» .%CU.<& v:)e U& V + . . . + U® V (tt sumnAnd.). 

This proves $ (Sl^ ) 2 i l ^ ^ • 

Remark 4. It was mentioned that <5 <2> K i s not separated 

in general. If we denote by P the closure of zero element in 

G- ® K 9 then the quotient group (G ® KVp i s separated. 

It can be shown that (G & K ) / i s l o ca l l y convex. We can 

therefore extend some resu l t s of t h i s § to the case of (b & K)jL» 

The following statement seems to be interest ing: Let G± 7 ' 

Ki ( i * 1 , 2 ) be four Abelian groups, 4JL and v cont i ­

nuous Z - l inear open mappings of <*-. onto Gt and of K* 

onto K̂  • We suppose next that <rt (or Kt ) i s d i v i s i b l e 

( i . e . for any y € <r-i and any *t 6 Z there e x i s t s *yV <?f 

with ny'^y. ) . Then the mapping (AJL # v ) * of f$ t 0 K,V 

onto f <»j ® K| */f\ obtained by factor izat ion of AJL *fc v i s 

open ( Q (i * 49 1 ) i s the closure of zero element in 

fy O.K-i f t * 4 , 1 ) ) . 

The proof of t h i s statement does not present any d i f f i c u l t y . 

Remark 5. We can construct the completion G & K of 
«r 9 K ) / r # I t i a e a s y t Q flee t h Q t Q & K i s l o c a l l y eorir. 

vex whenever G or K i s d i v i s i b l e . 

§ 2 . 

In t h i s sec t ion C means the f i e l d of ra t iona l , rea l or 

complex numbers. The unit element of C w i l l be denoted by 1 • 

.Ve reca l l that for any x, m \® *,, ••-••• •*"Alt 9 .X^ of C 0 G 

a mu l t ipl icat ion by a scalar X s C can be defined in the 

following manner (see f l j ) : 

(3) X.X - X X^ <8> * , + ••• + *>X«> 0 *.*, -

In case C i s the f i e l d of rat ional numbers, every element 

Z € C & G i s of the form (see f 1]) * - * ' • *f % where 
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/t e C , <y € G . 

Definition 3. Let E be a vector space over C . We shall 

say that E is a general topological vector space (abbrevia­

ted a.-space) if £ is a topological space and 

(a) (X , «j > -"* -X •+" ty is continuous in £ x £ 

(b) (X , * ) —> X x is continuous in (0 , 0 ) € C x E 

(c) # —•* X x is continuous in 0 e £ for every A e C * 

It can be shown that a topology of a 9.-space is descri­

bed by a basis of a filter if in E satisfying 

(a') U c r, A € C, IAU 1 imply X U s U , 

(b') for any U C f there exists I/ c & such that 

(c')if U e 7? X e C , then XV £ U for some ̂ cF. 

Similarly we define a locally convex £.-space. 

Proposition 4. Let G be a topological group, C the 

field of rational, real or complex numbers wife the natural to­

pology. Then the tensor product C & G with respect to the 

topology TC is a g. -space. If every neighborhood of zero ele«* 

ment in G generates G , then C ® G is a topological vec­

tor space. 

Proof. In order to prove that C & G is a a. -space if suf­

fices to show (a') and (c') . If U ={AeC; IXl* e } then for 

any neighborhood V of zero element in G holds 

A-a^s-a^ . 
Similarly A Jl^^. S J l ^ ^ f or A W s U . It remains 

to prove that, if G is generated by V f for every oceC&G 

there exists Xe C satisfying A - * c -ft^ ̂  * 

Obviously we may assume that V is a symmetric neighborhood in 

G . Let x, - X^St^*...* A ^ ® 'y.n, be an element of 
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C ® & • Every y ^ (1 4 i 4 n ) is of the form 

Hi m ¥*+•••+ % * , where /y* € V (14 K 4 A^ , 1 4 i 4 n X 

We choose A c C satisfying XX^^U(i4i4tt ) and put 

>t • 4t -f. . • # + t From Xss £ z?(XX4®<yj )€(J®V+..*+U&V 

(-ft summands) it follows •%->ftr'l-2s c ^.TV C "̂ "16 IT * 

where H ^ is defined in (l). 

Proposition 5. For any topological group G there exists 

a Z -linear and continuous mapping onto a subgroup of a local- % 

ly convex £. -space. If G is generated by every neighborhood 

of zero element, we can replace £. -space in the first asser­

tion by a locally convex vector space. 

Proof. We define a mapping Cp of G into C 0 G by 

(4) cf (x ) =- 4 <g> x 

for any x e & , The mapping g> is clearly Z -linear and 

continuous. The rest of the proof follows from Proposition 4 

and from Theorem 1 (see also § 1 of f3J). 

If G is a tor8ion-free group, C the field of rational 

numbers, then the mapping (4) is a Z -isomorphism (see ClJ). 

Theorem 3* Let G be a locally convex torsion-free Abelian 

group, C the field of rational numbers with the natural topo­

logy. Then the mapping (4) is a topological Z -isomorphism of 

G into C <& G • 

Proof. It suffices to prove that 9 is an open mapping. Let 

"̂ "36 IT ^ an arbitrary neighborhood of zero element in 

C <2> G . We may suppose that U is of the fbrm U » 

- {* € C; \IL\ 6 JkTA } , where Jk is an integer, and V is 

a symmetric convex neighborhood of zero element in G • 

We shall prove that Slu ^ n 9(G) s 9 (V) . Let^-l®* 

be an arbitrary element in - & u ^ r\ Cf CG-) . There exist 

*. e U , x i c V C1 £ i 4 n ) such that 
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(5) ** Ci <$ x)m fLf €>*.--!-... •**^€)X<lr> . 

If we put t t » ^ / f t t^ (14 4 4 <n ) f where m.± and fH.̂  

f 1 4 i 4 -a ) are Integra, then l-fc^l < I**.* I C1 4 i « ft >* 
- f - 4 

From (5) i t follows 1 <g> fi,x » m1 0 ^ ^ + . . . • "»%,, €> "V *,* * 
Putting -ft » . TT m^ the equality 

4 © itftx *» 1 ® it, fnT̂ ftx̂  -K .. 4-1 <g> ti^ tn^ ft. x^ implies 

/rtftx »/n^fn^ ^x^4-... 4-rn^fft^ /-*-*,„, 7 hence, with respect to 

the relations \Jhn± \ 4 \m^ I (1 4 i 4 ft ) , we obtain Anft • 

»X€ V+ . . . 4- ^ (ftft summands). From the convexi­

ty of V i t follows x € V . This concludes the proof. 

Proposition 6. If G i s a separated locally convex 

group, C the field of rational numbers with the natural to­

pology, then C ® G i s a separated locally convex group. 

Proof. It i s evident that G i s torsion-free* If 0 4* z c 

€ C ® G , then we may suppose that x» * ® x , 0 4* it € C , 

0 * x e G . We define a neighborhood Um {Ac C; IXI 4 * } 

in C and choose a symmetric neighborhood V in G not con­

taining X. We shall prove that X i s not contained in 

^"UfV * Suppose, to the contrary, that oc i s in .H» . 

Then for some A i - M^m? (141*'*), J^ C V (A 4 i 4 *i ) 

holds nl>t&x)»A,&x4-. . .4-A # x ; from *i,fc • m"*® x * 

« i»i~ & J^ x1 •*•. . . + 4n^ $> 4*^ x^ whire /t-Jt-fnT f 

i t follows iifVfn.-... "m. x»m4Vf.«i *.-.'fit x4-...4-4k mm',.,•#! x » 
1 *tV 1 £ *»»«f * f f c i «t*"f *lfc 

Making use of Ik^ml £ Im^l, (1 4 i 4 <n ) f we conclude 

<af\fH^..#fni|xc V+ ... + V knkm>f ...'4%^ summands), hence 

xt V . 

If G i s an Abelian group, H a vector space over Ct f 

a Z -linear mapping of G into H f then there exists 

(see [ l ] ) a C -linear mapping <L of C • G into H 
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defined by 

(6) f(X& * ) .» X-f fx) • 

Proposition 7. Let G be a topological Abelian group, N 

a locally convex a -space over C f 4 a Z -linear con­

tinuous mapping of <? into H • Then the mapping q* defined 

by (6) is continuous. 

Proof. Let W be a convex neighborhood in H satisfying 

A W s ^ for any A c C , IAI £ 1 • There exists a 

neighborhood y in (r, -P^V) fi W . It is easy to prove that 

9- CilU, v ) S W > where U-f^^; 1^ 1^? ' 
Theorem 4. On the tensor product C ® G there exists 

a unique locally convex topology with the properties 

(a) The canonical mapping jr —+€f(x) * 4& *X of <r into 

* C & fr i s continuous ; 

(b) For any locally convex 9. -space H and for any conti­

nuous Z -linear mapping 4 of Q into H , the mapping a. 

defined in (6) i s a continuous C -linear mapping of C # ( f 

into H . 

The proof of this statement i s evident. 
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