Commentationes Mathematicae Universitatis Carolinae

Vlastimil Dab
 The role of the "finite character property" in the theory of dependence

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 1, 97--104

Persistent URL: http://dml.cz/dmlcz/104997

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 6,1 (1965)

THE RÔLE OF THE "FINITE CHARACTER PROPERTY" IN THE THEORY OF DEPENDENCE
V. DLAB, Praha

The purpose of this little note is to show some consequences of omitting the "finite character" axiom in an axio- " matic dependence scheme. The note originated as a remark to one of Prof. R. Rado's problems mentioned in his lecture in the Conference on General Algebra in Warsam, September 7-11,1964.

In order to evoid references to other papers we introduce, briefly, the basic concepts (in terms of the relation "an element depends on set"). Let S be. a set, RS its power-set and $\rho \subseteq S \times \mathbb{R} S$ a relation between elements and subsets of S. A subset $I \leq S$ is said to be ρ-independent if $[x, I \backslash(x)] \notin \rho \quad$ for every $x \in I$; the family of all ρ-independent sets will be denoted by y_{ρ} ($\varnothing \in J_{\rho}$ for any ρ). A relation ρ is called the dependence relation on S if it satisfies the following properties:
(I) $\quad x \in X \rightarrow[x, X] \in \rho \quad$ (incidence);
(E) $[x, X] \notin \rho \wedge[x, X \cup(y)] \in \rho \rightarrow[y, X \cup(x)] \in \rho \quad$ (exchange);
(T) $[x, Y] \in \rho \wedge \forall y(y \in Y \rightarrow[y, X] \in \rho) \rightarrow[x, X] \in \rho \quad$ (transitivity).

Let us remark that the prcperty(T) together with (I) imply the following property (M) of a relation ρ
(M) $[X, Y] \in \rho \wedge Y \equiv X \rightarrow[X, X] \in \rho \quad$ (monotony).

Denote further by (E_{k}) and (T_{n}) the properties (E) and (T), respectively, restricted on $X \in \mathcal{I}_{\rho}$ and $Y \in \mathcal{J}_{\rho}$.

The following eimple example of
$S_{1}=(a, b, c)$ with $\rho_{1}=\left(S_{1} \times \mathbb{R} S_{1}\right) \backslash([a,(b, c)],[f,(a, c)],[c,(a, b)])$ establishes the logical independence of (M) on (I), $\left(E_{k}\right)$ and (T_{n}).

In paper [1], we have shown that all maximal ρ-independent sets (i.e. maximal elements of \mathcal{Y}_{ρ}) have the same cardinality (the rank of S) if the relation ρ satisfies (I), $\left(E_{n}\right),\left(T_{n}\right),(M)$ and
(F) $[x, X] \in \rho \rightarrow \exists F(F \subseteq X \wedge F$ finite $\wedge[x, F] \in \rho$) (Pinite character) (i.e. ρ is a particular type of a $G A$-dependence relation introduced there). The main result of the present note reads that the same conclusion does not hold for a dependence relation ρ defined above. As a matter of fact, in this formulation the latter statement would be trivial; for, (I), (E) and (T) do not assure the existence of maximal elemats in I_{ρ} (this is a consequence of (F)), and the following example shows that no such elements may (in general) exist:

If S_{2} is an infinite set and ρ_{2} is defined by $[x, X] \in P_{2} \leftrightarrow X \in X \quad$ or X infinite,
then ρ_{2} clearly satiafiee (I), (E) and (T), and $Y_{\rho_{2}}$ being the family of all finite numbers of S_{2} has no maximal elemente.

To avoid this ambiguity in what follows we shall consider a dependence atructure (S, ρ) as a pair of a set S and a dependence relation ρ. with an additional property of (B).

y_{ρ} hes maximal clements.

The main reault reads then as follews.
Theorem 1. Let (S, ρ) be a dependence structure.
(i) If maximal ρ-independent set is finite, then all are finite and have the same number of elements.
(ii) If a maximal ρ-independent set is infinite, then all are infinite.

It is evident that (ii) follows immediately from (i). The assertion (i) is thenconsequence of the following two lemmas.

Lemma 1. Let ρ be a relation on S satisfying (I), $\left(E_{n}\right)$, (T_{n}) and (M). Let M_{1} and M_{2} be two maximal ρ-independert sets and M_{1} be finite. Then M_{2} is finite, too.

Proof. Suppose, on the contrary, that M_{2} is not finite. . Let
$M_{1}=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{1}, x_{2}, \ldots, x_{n}\right)$, where $\left(x_{1}, x_{2}, \ldots, z_{m}\right)=M_{1} \cap M_{2} ;$ evidently $n \geqslant 1$. Let us choose n elements of $M_{2} \backslash M_{1}$ and denote by M_{2}^{\prime} the (infinite) set of all remaining elements of $M_{2} \backslash M_{1}$:

$$
M_{2}=\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right) \cup M_{2}^{\prime} .
$$

Since $M_{2} \backslash\left(y_{1}\right)$ is no longer maximal (however, in piew of (M), it is ρ-independent), there is an element $x_{i_{1}} \in M_{1}$ such that

$$
\left[x_{i_{1}}, M_{2} \backslash\left(y_{1}\right)\right] \notin \rho ;
$$

for, otherwise
$\left[y_{1}, M_{1}\right] \in \rho$ and $\forall x_{i_{1}}\left(x_{i} \in M_{2} \rightarrow\left[x_{i}, M_{2} \backslash\left(y_{1}\right)\right] \in \rho\right.$ would, in view of $\left(T_{n}\right)$, imply $\left[y_{1}, M_{2} \backslash\left(y_{1}\right)\right] \in \rho$, a contradiction. Uaing (E_{n}) together with (M), we can easily verify that

$$
M_{21}=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{i_{1}}, y_{2}, \ldots, y_{n}\right) \cup M_{2}^{\prime} \in I_{\rho}
$$

Now, there is another element $x_{i_{2}} \in M_{1}$ such that

$$
\left[x_{i_{2}}, M_{21} \backslash\left(y_{2}\right)\right] \notin \rho ;
$$

this follows again from the fact that M_{1} is maximal (and hence, $\left[y_{2}, M_{1}\right] \in \rho$). Thue

$$
M_{2}=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}, y_{3}, \ldots, y_{n}\right) \cup M_{2}^{\prime} \in y_{p} .
$$

Proceeding in this manner we reach in n steps the following ρ-independent set
$M_{2 n}=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right) \cup M_{2}^{\prime}=M_{1} \cup M_{2}^{\prime}$. Hence, we get a contradiction of the maximality of M_{1}. The proof of Lemma 1 is completed.

The latter proof can be readily extended to finite sets M_{1} and M_{2} and we get thus

Lemma _2. Let ρ be relation on S satisfying (I), $\left(E_{k}\right)$, (T_{n}) and (M). If M_{1} and M_{2} are two finite maximal ρ-independent sets, then they have the same number of elements.

Proof. Since both
$\operatorname{card}\left(M_{1}\right) \geqslant \operatorname{card}\left(M_{2}\right)$ and $\operatorname{card}\left(M_{1}\right) \leqslant \operatorname{card}\left(M_{2}\right)$,
Lemma 2 immediately follows.
The following theorem shows that (ii) of The rem 1 cannot be strengthened.

Theorem 2. Let $(c r)_{\gamma \in \Gamma}$ be a family of infinite cardinail numbers. Then there exists a dependence structure with a family $\left(M_{\boldsymbol{r}}\right)_{\gamma \in} \Gamma$ of maximal independent sets such that card $\left(M_{\gamma}\right)=e_{\gamma} \quad$ for each $\gamma \in \Gamma$.
Proof. Consider a family $\left(S_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \in \Gamma \quad\right.$ of mutually disjoint sets such that
card $\left(S_{\boldsymbol{\gamma}}\right)=e_{\gamma}$ for each $\boldsymbol{\gamma} \in \Gamma$,
and denote by S_{0} the union of these sets $S_{0}=\bigcup_{\gamma \in \Gamma} S$. Define the relation $\rho_{0} \subseteq S_{0} \times \mathbb{R} S_{0}$ on S_{0} in the following way: For $x \in S_{0}$ and $X \subseteq S_{0}$,
(*) $[x, X] \in \rho_{0} \longleftrightarrow x \in X \quad$ or, for a certain $\gamma_{0} \in \Gamma$, $X=\left(S_{\gamma_{0}} \backslash F_{\gamma_{0}}\right) \cup A_{\gamma_{0}}$, where $F_{\gamma_{0}} \subseteq S_{\gamma_{0}} \quad$ is finite, $A_{\gamma_{0}} \subseteq \cup_{r \in \Gamma} S_{\gamma} \quad$ and $\operatorname{card}\left(A_{\gamma_{0}}\right) \geqslant \operatorname{cand}\left(F_{\gamma_{0}}\right)$. It $\operatorname{can}^{\gamma}{ }^{\gamma} \boldsymbol{\gamma}_{0}$ easily seen that, besides (I), also (T) is
satisfied by this relation ρ_{0}. Now, prove the validity of (E) for ρ_{0}. Thus, let $x \in S_{0}, y \in S_{0}$ and $X \leqslant S_{0}$ be such that
$(* *) \quad[x, x] \notin \rho_{0}$ and $[x, x \cup(y)] \in \rho_{0} \cdot$
Then, $x \notin X$. The conclusion $[y, X \cup(x)] \in \rho_{0} \quad$ is trivial for $x=y$; suppose, therefore, that $x+y$ - The assumption (**) implies that $x \cup(y)=\left(S_{\gamma_{0}} \backslash F_{\gamma_{0}}\right) \cup A_{\gamma_{0}}$ with $\operatorname{card}\left(F_{\gamma_{0}}\right)=\operatorname{card}\left(A_{\gamma_{0}}\right)<x_{0}$. for a suitable $\gamma_{0} \in \Gamma$. We have to consider four (in fact, very similar) cases:
(i) $y \in S_{\gamma_{0}}, x \in S_{\gamma_{0}}$,i.e. $y \in S_{\gamma_{0}} \backslash F_{\gamma_{0}}, x \in F_{\gamma_{0}}$; then, evident$1 y, \quad\left[y,\left(S_{\gamma_{0}} \backslash\left[\left(F_{\gamma_{0}} \cup(y)\right) \backslash(x)\right]\right) \cup A_{\gamma_{0}}\right] \in \rho_{0}$;
(ii) $y \in S_{\gamma_{0}}, x \in S_{\gamma_{0}}, i . e, y \in S_{\gamma_{0}} \backslash F_{\gamma_{0}}, x \notin S_{\gamma_{0}} \cup A_{\gamma_{0}} ;$ then, $\left[y,\left(S_{\gamma_{0}} \backslash\left[F_{\gamma_{0}} \cup(y)\right]\right) \cup A_{\gamma_{0}} \cup(x)\right] \in \rho_{0} ;$
(iii) $y \notin S_{\gamma_{0}}, x \notin S_{\gamma_{0}}$, i.e. $y \in A_{\gamma_{0}}, x \in F_{\gamma_{0}} ; \quad$ then, $\left[y,\left(S_{\gamma_{0}} \backslash\left[F_{\gamma_{0}} \backslash(x)\right]\right) \cup\left(A_{\gamma_{0}} \backslash(y)\right)\right] \in \rho_{0} ;$
(iv) $y \notin S_{\gamma_{0}}, x \notin S_{\gamma_{0}}$, i.e. $y \in A_{\gamma_{0}}, x \notin S_{\gamma_{0}} \cup A_{\gamma_{0}} ;$ then,
$\left[y,\left(S_{\gamma_{0}} \backslash F_{\gamma_{0}}\right) \cup\left(\left[A_{\gamma_{0}} \backslash(y)\right] \backslash(x)\right)\right] \in \rho_{0}$.
Thus, (E) holds for $\rho_{0} \cdot$
Moreover, since, for any element $x \in S_{\gamma}, S_{\gamma} \backslash(x)$ is not of the form described in $(*), S_{\gamma}$ is ρ_{0}-independent for each $\gamma \in \Gamma$. Also, $S_{\gamma}=\left(S_{\gamma} \backslash \varnothing\right) \cup \varnothing$ is maximal for each $\gamma \in \Gamma$, hence, the last condition (B) is satisfied for ρ_{0} and, thus, $\left(S_{0}, \rho_{0}\right)$ is a dependence structure (in the sense of this note).

This completes the proof, for the existence of maximal
ρ_{0}-independent sets with prescribed cardinalities has also been established (take e.g. $M_{\gamma}=S_{\gamma}$).

Remerk. As a matter of fact, referring back to the dependence structure $\left(S_{0}, \rho_{0}\right)$ constructed in the proop of

Theoren 2; all sete of the form
$(* * *)\left(S_{\gamma_{0}} \backslash F_{\gamma_{0}}\right) \cup A_{\gamma_{0}}$ with $A_{\gamma_{0}} \cap S_{\gamma_{0}}=\emptyset \quad$ and $\operatorname{card}\left(F_{\gamma_{0}}\right)=\operatorname{cand}\left(A_{\psi_{0}}\right)<\mu_{0} \quad$ are maximal and ρ_{0}-independent. Evidently,
cand $\left(\left(S_{\gamma_{0}}, F_{\gamma_{0}}\right) \cup A_{\gamma_{0}}\right)=\operatorname{cand}\left(S_{\gamma_{0}}\right)=\alpha_{\gamma_{0}}$
On the other hand, any maximal ρ_{0}-independent set of this atructure is of the form $(* * *)$. For, any maximal set mast necessarily be of the form (x) and any maximal ρ_{0}-independent set must, moreover, satisfy the last condition on cardinalities in ($* * *$). Thus, the cardinality of an arbitrary maximal ρ_{0}-independent set of $\left(S_{0}, \rho_{0}\right)$ is equal to one of the numbers

Finally, let us remark that the maximal ρ_{0}-independent sets of (S_{0}, ρ_{0}) satisfy also the conditions denoted in $[2]$ by $\left(\tilde{B}_{2 f}^{\prime}\right)$ and $\left(\widetilde{B}_{2 f}\right)$:
($B_{2 f}^{\prime}$) For any two maximal independent sets M_{1} and M_{2} and any finite subset $M_{1}^{\prime} \subseteq M_{1}>M_{2} \quad$ there exists a subset $M_{2}^{\prime} \subseteq M_{2} \backslash M_{1}$ of the same number of elements such that $\left(M_{1} \backslash M_{1}^{\prime}\right) \cup M_{2}^{\prime}$ is a maximal independent set.
($\tilde{B}_{2 f}^{\prime}$) For any two maximal independent sets M_{1} and M_{2} and any finite subset $M_{1}^{\prime} \subseteq M_{1} \backslash M_{2}$ there exists a subset $M_{2}^{\prime} \equiv M_{2} \backslash M_{1}$ of the same number of elements such that $M_{1}^{\prime} \cup\left(M_{2} \backslash M_{2}^{\prime}\right)$ is a maximal independent set.

Both properties suffice torprovedfor singlempoint subsets M_{1}^{\prime} and M_{2}^{\prime} (the properties (\dot{B}_{2}^{\prime}) and $\left(\tilde{B}_{2}^{\prime}\right)$ in $[2]$); the proof involves several simple cases to be considered and is left to the reader. Thus, the example of the dependence structure (S_{0}, ρ_{0}) in the proof of Theorem 2 shows that the assumption of the finite character property
(B_{3}) If every finite subset of a set X. is a subset of a suitable maximal independent set, then X is a subset of a maximal independent set. was essential in $\delta 5$ of [2].

In order to show also t he logical independence of (B_{s}) on the stronger properties ($B_{2 q}^{\prime}$) and ($\tilde{B}_{2 q}^{\prime}$) of $[2]$, consider the following simple example (S_{*}, ρ_{*}) of a dependence structure:

$$
S_{*}=S_{1} \cup S_{2} \text { with } S_{1} \cap S_{2}=\varnothing \text {, card }\left(S_{1}\right) \geqslant x_{0}, \operatorname{cand}\left(S_{2}\right) \geqslant \kappa_{0} .
$$

and

$$
\begin{aligned}
{[x, X] } & \in \rho_{*} \leftrightarrow x \in X \text { or card }\left(X \cap S_{2}\right) \geqslant N_{0} \text { or } \\
X & =\left(S_{1} \backslash F_{1}\right) \cup A_{2} \text { with } F_{1} \text { finite and card }\left(F_{1}\right) \leqslant
\end{aligned}
$$

$\leqslant \operatorname{card}\left(A_{2}\right)$.
It is a matternof routine to check that ρ_{*} satisfies (I), (E) and (T), that all maximal ρ_{*}-independent sets are of the form
$M=\left(S_{1} \backslash F_{1}\right) \cup A_{2}$ with $\operatorname{card}\left(F_{1}\right)=\operatorname{cand}\left(A_{2}\right)<N_{0}$ and that they satisfy the properties ($B_{2 q}^{\prime}$) and ($\tilde{B}_{2 q}^{\prime}$) (which reduce to ($B_{2 f}^{\prime}$) and ($\tilde{B}_{2 f}^{\prime}$), respectively). All maximal ρ_{*}-independent sets have thus the same cardinality ($=\operatorname{card}\left(S_{1}\right)$) - a fact which follows, in general, from the property $\left(B_{2 q}^{\prime}\right)$. However, it turns out that $\left(B_{3}\right)$ is not pulfilled:

Let T be a countable subset of S_{2} and $\left(\dot{F}_{1 n}\right)_{n \geqslant 1}$ a family of subsets of S_{1} such that
card $\left(F_{1 n}\right)=n$ for every $n \geqslant 1$.
Then, for any finite subset F_{2} of T there is a natural number n (the number of elements of F_{2}) such that $\left(S_{1} \backslash F_{1 n}\right) \cup F_{2}$
is a maximal ρ_{*}-independent set. But, there is no maximal
ρ_{*}-independent set containing the set T.
neferences
[1] V. DLaiB, General al ebraic dependence relations, Publ. "ath.Debrecen 9(1962), 324-355.
[2] V. DLAB, ixiometic treatment of bases in arbitrary in arbitrary sets, to appear in Czech. Wath.J.

