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Commentationes Mathematicae Univereitat is Carolinae 

6, 1 (1965) 

CONCERNING A PROOF OP ^ ^ sS 2 * WITHOUT J^AXIOM 

OP CHOICE 

Pet r VOPfiNKA, Praha 

We denote 5L*0 ( S r e s p . ) the se t theory with the 

axioms of the groups A , 0 , C ( AfBf Cf 0f £ resp») 

see £l] • 

Our considerat ions are done in the set theory X0 . I t 

i s well known, tha t i t i s poss ib le to def ine , i n t h i s theo ry , 

the c lasa L of cons t rue t ib le s e t s . 

Let c fi L « We denote L (c ) the c lass cons t ruc t 

ed analoguously ' to the cons t ruc t ion of L - the only d i f f e 

rence i s - t h a t we define F'*x, • C f where oc i s the 

l e a s t o rdinal number such tha t (x ) C .* € c —* 

(l(l)tfi *<*> & X m F'/J 3 J , I f c € L f we have obviously 

L C c ) m L . 

R e s t r i c t i n g the r e l a t i o n € on L Cc ) , we obta in a 

model of the theory 2 L , which we denote by A (c ) 

(see [ 2 ] ) . 

Lemma 1. The ordinal numbers of £ * are the same aa 

the ordinal numbers of A ( c ) -

Lemma 2* Every cardinal number oc of 2E0 i s a cardinal 

number of A C c ) • 

Proof. Let there be a 4 «* 1 ~ mapping of «0 onto fl m at, 

in A (c) • Then the same mapping i s â  4 ~1 ~ mapping of 

«c onto fi in SL0 . 

- I l l -



I..* nana 3 . Every regular cardinal number o(- of -2-* ia 

a regular cardinal number of A Cc ) • 

Proof. Let at be conf lnal t o / 3 c « C in A £c ) * 

Then i t i s confinal to /& in 2L0 . 

Lemma 4 . Let f be a cardinal number in A such 

that 60^+^ i s the f i r s t greater one ( in A ) . Then we 

have *ic + 4 * 2. in Sl0 -

Proof* Obviously SJL̂  € T̂ € **•>«,+ *j * Hence there ex

i s t s a set C which i s a 1 - 1 - mapping of cU^ onto -jr. 

Evidently c f i L . ^ d c + i i a t n e f i r s t cardinal greater 

than CJ& in A f c ) • Be a l l y , i f there i s a of such 

that o ^ € cT € &0C+4 ax-d such that C^ i s a card i 

nal in A(c) , we have y e cC and hence o^ i s 

cardinal number in A - a contrad iction. Since the axiom 

of choice holds true in A (CL^ 9 we have X^^ -6 2 * 

i a A (a.) and hence tf*^ -£• -2 * in the theory. 

Theorem. Any cardinal number -*->«-#• <i in -2-o such 

i s an inaccessib le cardinal number that ^ < * . 2 *<* 
ІS 

in д . 
Proof. <Ч*«M i s reg 

lemma 3 . By lemma 4 • 4 

ber in Д • 

i s regular card inal numbsr in A by 

i s imccess ib le card inal num-

Corollary 1. If the system of axioms S.0 4- f 3 oc ) 

t*£c*.-| • • i * J i s consistent , the system X +* "there 

e x i s t s an inaccessib le cardinal number** i s consistent too. 

Corollary 2 . I f the existence of an inaccessib le cardinal 

number contradicts with the axioms of the set theory, then 

Jic + vf ^ 2 ia provable without using of the axiom of 

choice• 
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