Petr Vopěnka Concerning a proof of $\aleph_{\alpha+1} \leq 2^{\aleph_\alpha}$ without axiom of choice

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 1, 111--113

Persistent URL: http://dml.cz/dmlcz/104999

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

6, 1 (1965)

CONCERNING A PROOF OF $x_{c+1} \leq 2^{n}$

OF CHOICE

Petr VOPENKA, Praha

We denote Σ_{0} (Σ^{*} resp.) the set theory with the axioms of the groups A, B, C (A,B,C,D,E resp.) see [1].

WITHOUT

Our considerations are done in the set theory Σ_{o} . It is well known, that it is possible to define, in this theory, the class L of constructible sets.

Let $c \subseteq L$. We denote L(c) the class constructed analoguously to the construction of L - the only difference is that we define F' = c, where α is the least ordinal number such that (x) [x $\in c \rightarrow$

(3ß)[Beadex=F'B]]. If ceL, we have obviously L(c) = L.

Restricting the relation e on L(c), we obtain a model of the theory Σ^* , which we denote by $\Delta(c)$ (see [2]).

Lemma 1. The ordinal numbers of \sum_{a} are the same as the ordinal numbers of $\Delta(c)$.

Lemma 2. Every cardinal number \propto of Σ_{o} is a cardinal number of $\Delta(c)$.

Proof. Let there be a 1-1-mapping of \ll onto $\beta \in \ll$ in $\Delta(c)$. Then the same mapping is a 1-1-mapping of \ll onto β in Σ_{e} .

- 111 -

Lemma 3. Every regular cardinal number of Σ_o is a regular cardinal number of $\Delta(c)$.

Proof. Let α be confinal to $\beta \in \alpha$ in $\Delta(c)$. Then it is confinal to β in Σ_o .

Lemma 4. Let γ be a cardinal number in Δ such that $\omega_{\infty+1}$ is the first greater one (in Δ). Then we have $x_{\infty+1} \leq 2^{\infty}$ in Σ_o .

Proof. Obviously $\omega_{\infty} \in \gamma \in \omega_{\infty+1}$. Hence there exists a set c which is a 1-1-mapping of ω_{∞} onto γ . Evidently $c \in L$. $\omega_{\infty+1}$ is the first cardinal greater than ω_{∞} in $\Delta(c)$. Really, if there is a σ' such that $\omega_{\infty} \in \sigma \in \omega_{\infty+1}$ and such that σ' is a cardinal in $\Delta(c)$, we have $\gamma \in \sigma'$ and hence σ' is cardinal number in Δ - a contradiction. Since the axiom of choice holds true in $\Delta(a)$, we have $x_{\alpha+1} \leq 2^{x_{\alpha}}$ in the theory.

Theorem. Any cardinal number $\omega_{\alpha+1}$ in Σ_o such that $\lambda_{\alpha+1} \neq 2^{\lambda_{\alpha}}$ is an inaccessible cardinal number in Δ .

Proof. $\omega_{\infty+4}$ is regular cardinal number in Δ by lemma 3. By lemma 4 $\omega_{\infty+4}$ is inaccessible cardinal number in Δ .

Corollary 1. If the system of axioms $\Sigma_o + (\exists \sigma c)$ $[x_{n+1} \neq 2^{n_4}]$ is consistent, the system $\Sigma^* +$ "there exists an inaccessible cardinal number" is consistent too.

Corollary 2. If the existence of an inaccessible cardinal number contradicts with the axioms of the set theory, then $x_{r+1} \leq 2^{x_r}$ is provable without using of the axiom of choice.

- 112 -

Literature:

- K. GÖDEL, The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Annals of Math. Studies 3, Princeton 1940.
- [2] A. LÉVY, A generalization of Gödel's notion of constructibility, The Journ. of Symb.Log. 25(1960), . No 2.

٨