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ON THE DEPENDENCE RELATION OVER MODULES

Vlastimil DIAB , Praha
(Preliminary communication)

In the present note, we shall give some necessary and
sufficient conditions for a ring R to satisfy the follow-
ing property: All modules over R admit a dependence theory
analogous to that in abelian groups (in perticular, every mo-
dile over R admits an invariant rank)., Our theorems gene-
ralize the results of Kertész [4] and Fuchs [3].

Without éw substantial loss of generality, all rings to
be considered here are (associative) rings R  with identi-
ty and all R -modules - unitary left modules over R . For
the terminology we refer to [2]) or [1]. _

Let M be an R -module. An element x € M is said
todepemdaon X & M if there exist LA € R and
A, € R, X, e X for 4:1'-£n such that

0 #+ ax -4§, AgX; -
With respect to this dependence relation, any module over a
ring is an A -dependence structure. For a large family of
rings R including all rings with maximal or minimal condi- -
tion for left ideals, the‘ R -modules are GA -dependen-
ce structures (on the other hand, not all commutative rings be-
long to this family): '

Theorem 1. Every R -module is a, GA -depemience
structure if and only if, for any proper left ided L of R,
there exists (© ¢ L such that the quotient ideal L:P
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is irreducible (i.'e. it cannot be represented as the interscc-
tion of two left ideals different from L : @ ).

As to the similar question on L A -dependence structures,
the answer is a consequence of the following more general theo-
rem.

Thearem 2. Let % be a family of left ideals of R. Then
the following statements are equivalent:

(1) For any R -modul M and any subset S &€ M such
that the ordcr (annihilating ideal) of each element a € S
belongs to x, S isa LA -dependence structure (with
respec{: to the dependence relation restricted to S ).

(i1) Every ideal belonging to & is irreducible.

Corollary. Every "R -module is a LA -dependence struc-
ture (and thhs, any two its maximal independent subsets have the
same cardinality) if and only if every left ideal L of R
is irreducible, i.e. if and 6nly if the family of all left ide~-
als of R is a chain (linearly ordered by inclusion).

The last theorem reflects, in~a general form, the situation
in abelian groups. '

Theorem 3. Let & be a family of left ideals of a ring R.
Let P be a two-sided prime ideal of R  such that the fol-
lowing two gonditions are satisfied:

(1) 1r L& ¥ ana L:p =P for aneclement ® € R,
then L & P.

(11) 12 L€ £ and L & P, then L 1is prime.

Then, any ' R -module M possesses the following proper-
ty:
Let S € M be the subset of all elements of order P, If
M., and M}. are two maximal independent subsets of M
consisting of elements whose orders belong to ¥ y then
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S "M, and S A M,, are maximal independent subseta

of 8 .1If, moreover, P 4is irreducible, then S 1is a LA~
dependence structure and thus eaxd (S A M, )= card (S n Mz ).
_ The above results were read by the author in the Makere-
re University College at Kampala, Uganda, on November 16,
1963 and in the 6th Austrian Mathematical Congress at Graz,
Septembe;r 14-18, 1964.
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