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Commentationes !lathematicae Universitatis Carolinae
6,1 (1965)

GENERALIZED PROXIMITY AND UNIFORM SPACES II.
M. HUSEK, Praha

This paper is an immediate continuation of [4]. Therefo-
re all symbols, terms and definitions introduced there are
used without any references. In this last part II we investi-
gate relations between proximity spaces and semi-uniform spa-
ces (§ 4), proximity spaces and closure spaces (§ 5) and fi-
nally between semi-uniform spaces and closure spaces (§ 6).
The most of our results, referring to preservation of proje~
ctive or inductive properties (e.g. to be a subsm ce, a limit
of & presheaf etc.) by competent functors, are consequences
of more general propositions from (3) and [4], § 1. The last
§ 7 is devoted to the brief account of other relations (embed=-
aing of PV into C, U into P_, ).

R t T OX; =! o
Definition 4.1. Let (@ < ne>{U IXc P},
’u(—»‘ﬁ,fDU'LL:P.Weshallsaythat/p is ipnduced W

U (sign U — fo ) if one of the following eq\iivalent
conditions is fulfilled:
1) p={XY)IXuYeP, CAl(X=<Y)+ 8] ;
2) U ={UIXIIUe U} for a1l X e en'P;
3 {<AM,X)IMEeLAL(Xx P)] generstes -
Definition 4,2. Let f¢ be a monotone proximity,
p e 'ftH{quXc P$, U ¢> €. We shall say that % 1is in=
duged by f (sign n —» U ) if one of the following equi-
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valent conditions is fulfilled: i

1) ¥ ={MIMe € (PxP), Ex M'n EAM for ary subnet M’
of M} 5

2) ¢={MIMEeL(Px P)(BM, Ex MPep £ar any subnet M’
of M}

3) {(XxY)u ((P-X)x P)IXcP,Yel, | 4s a subbase for %.
(Hence {U{X;=xY ltel}l{X;liel} is a finite dis-
Joint cover of P amd Y; € Uy, for all &1} 18 a
base for U ).

Remark 4,1, (a) The operations —»> in the faregoing
definitions determine covariant functors Q : 7’;4 - u;

w: % =R (it 1e almost self-evident that each proximity
induced by a semi-uniformity is monotone).

(b) The case of non-monotone proximity spaces is rather
difficult. The following example shows that conditions (1),
(2),(3) of definition 4.2 are not equivalent in this case and
that there are no covariant functors @ui Pl »

' : P“5 U  such that éuf = §Lf for every proximity
space §, graph ¢uf = graph f@"dﬁﬂ¢Lf-— graph {) for each
morphism £ of PY (PL) B Qu(,/, = QLé, « @ . (But clearly
we have covariant functors ¢ o ﬁ PV U, S 1 Prru,
where 1,, I, are covariant functors from ?U, Pt Tesp.,
in ?M assigning to each object its modi!icétion - see theo-
rem 2.5.) )

Exagple 4.1. (a) We shall demonstrate that the conditions
in definitien 4.2 are not equivalent’ provided s is a non~mo-
notone proximity. In every case { (X x¥Y)uv ((P-X)x P) |
1Xu Ye U, , X mon n(P-Y)} 18 a subbase for the semi-uni-
Atomity induced by the coarsest monotone proximity finer than -

Let P be the set of real numbers, g =1<X,¥>IXuYcFh
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either X N Y+ 8 oreaxdXzx, Xc{-ﬂ%, IneNj,Ys-min X
or card K=, X34, >0, Y+ 8} . Denote by 72, the
coarsest monotone proximity finer .than f. and by 72, the fi-
nest monotone proximity coarser than 1 (11,1 is the finest pro-
ximity for P eand i, A (14,53 [ xJ4, > [) ie the coar-
sest proximity for 11, = [ ). Let 1, > U, P = U, ,
¢’ be generated by T={MIMe € (Px P),ExcME3M Eor any
subnet M' of MJ, €” be generated by Fi_{MIMe€ (PxP),
ExM'pn € AM" whenever M" is a subnet of M' and M’ is
s subnet of M}, U e> ¥, U" > €, Then’ll:,iﬂ.”z
ZU 32 % (notice that the sequence{(n,(-u{-l,ﬂi—l NimeNfe
e -¢" dand & 4 €, €& ¢ .,
(b) Let us have covariant functors Qu: PYs .,
zp“: PL AU  described in remark 4.1(b). Let P be at least
a four-point set, &,, @,, @; be subsets of P such that
B+ Q; P (i=1,23),candl (P-Q )22, PxP=(8, x @, )
U8, %8, Y0 (B;x 8y, 9, =2p @, xep Gy, poAK, IXUX Pesther Kn Y+ B
or Xeeap' Ry and YnQ:* 8 for some < f. ILKPU>~
=3P, n?= ¢ <P, 2>, then % = (Px P) because the iden-
tity mappings of (d;, g2: > into (P, n > are upper pro-
ximally continuous and ¢; are monotone. But this leads to a
contradiction because there is a lower proximally continuous
mapping ¥ of {P,fr> onto & monotone proximity space
(R, %>, where r does not induce (R xR), (Put R=
=(a, L), £ ={<X,¥)I Xy Y= R, either Xn Y+ & or X=(8),
Y=@)},f= (g ulx)x(@)u (P-(Qu(x))x(4)) where X €
eP-GQ4,)
Definition 4.3. We shall say that a proximity is gsepi-uni-
3o 17 semi~ 0! 8 -

ric unjformizable resp., if it is induced by a semi-uniformity,
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uniforsity ete. Similarly for proximity spaces. We shall denote
w Byr %, £, By 1 resp., the full subcategory of %y
generated by the class of all semi-uniformizable proximity spa=-
ces, uniformizable proximity spaces etc.

Theorem 4.1. There is a coarsest semi-uniformity % im
the set of all semi-uniformities inducing a giem proximity s -
U 1s induced by 1 .

Proof, Let V' —nn — U — ¢ . Evidently
Ve, £=9:-

Iheorem 4.2, There is a finest monotone proximity -, 1=
the set of all monotons proximities inducing a given semi-uni-
formity %. £ 4s induced by % .

Proof. Let ¢ = U — n — U evidently £ < &,
V=U.

Bemrk 4.2, y([UI=2R ,, v[UJI=F, ylU,]=
‘Qy) v (U, 1= Py -

IThexen 4,3, Lot P e N —{U, IXc P§ . The fol-
lowing conditions are equivalent:

1) 4 is semi-uniformizable ;

21 X, uX, P then (X, u X;) A Y Aif and only
if either X, 2 Y oo X, nV¥Y;

e X, vX, P "them 2(/\,1?)(1 = uX1 n uxz ;

4) p 1s gererated by the class o'= {<(M, X>IM e €(P),
XecP, thereds N e €(X = P) such that BN= M and
CAN', €Ex N')>e@  for each subnet N' of Nf .
‘ Proof. Implications 4 ¢= 2w 3, 1 = & follow
© from defimitions 4.1 and 4.2, From the remaining implicatioms it
1s easy to prove 4 = 2 .

Theorem 4.4, Let o« 12 «»{%, X c P} . Thea the

v
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following conditions are equivalent:

1) 4 is symmetrioc semi-uniformizable;

2) v ie symmetric;

3 Ye %, implies P- X € %P_y H

4) p={<MX>IX <P am pn (C(x)x(EM)) #+ &
for each subnet M' of M} . ,

Proof. It 18 obvious that 1 =» 2 ém 3, 24w 4 , Ir
W= (XxY)u (P-X)x P them W™"e (P-¥)x (P=X)u (¥x P).
It follows 3 => 1.

Theorem 4.5. Let 9 ¢ = {%U, X s Pf 5 be semi-
uniformizable. Then the following conditions are equivalent:

1) £ is uniformizable; )

2) 4t Xmen p Y then Xmom pn (P-Z),Zmonp Y
for some Z ;

34 Z ¥ for each Z € U, then X Y;

4)if Y€ U, then Ye Zéz for some Z & ?{X;
5) 1f<KM, Z> € for each Z e Uy then
(M, X>ep;

6) let A be a right-directed set, for each o« € A be .
(M , X 2€p and for each net N with IN=A, N € X
for all < € A be <N, X > € (i.e. for any Y e %,
there 1s o« € A  such that X, < Y fa each B c A,
f>K ), then <M, X>€ 0 where IM=Ax TT{IM_|
[« € A, M(cc,{a‘!‘.t/\}) = (Mq,)a..‘ .

Proof. It is easy to verify that 1 =p 26 o0 4 wp 5mp
26 =3, Suppose that 4 1is true, s — U > 5 . Then
U 1is a uniformity. Imdeed, for any W= (X x Y)u (P-X)xP:.ﬂ
there s a Ve U such that Ve Ve W  (Put Ve (XxZ)y
V(Z-X)%Y)u((P-Z)x P)  where Ze U, ,Ye U, . ) Hen~
ce 4 =1, .
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Corollary. let p erpren{ll, (X c P} - Then the
following conditions are equivalent:

1) £+ is symmetric uniformizable;

2)4f Xmom £ Y  then Xmon p (P=2), Ymonfr Z

tor some Z ;

3) it Xmon pn ¥ then 2, nZ, = & for some
Z,6Uy 7 Zp 6 Uy ;
- 4)if YelUUy _then P-Z € U, for some
Z € 'ux . _
Theorem 4.,6. Let % ¢» ¢, P= QU U .  Then the
following conditions are equivalent:
1) U 4s induced by a monotone proximity;
2) {UIVeU,fUX) | xe P? is a finite set} is
a base for U ;
3) L={MIMe € (Px P)L¥nt(E(xM)xEBM))# 8 for each
subnet M' of M.
Theorem 4,7. Let s+ — % . If 1 1s uniformizable, sym-
 metrio, symmetric uniformizable resp., then % 1s a unifornity,
.’_-mtric semi-uniformity, symmetric uniformity resp.
) Proof follows from the proofs of theorems 4.4, 4.5.
_ Remark 4.3, If a symetric semi-uniformity % 1s induced
: .hybo monotone proximity then {VIVe U, V=U{X; xX; l1e1},
MI<¢’\‘.? is a base for %, (If U=U{fX;x¥% liel}
where {X; I i € I} is a disjoint family and if U~ U~'
B ?'th.n U= UflX; v Xj Ix (X; v Xj YIKE,75€l x1, Un()(ix/\’j)#ﬁf.)
S W. A semi-uniformity is called proximally
g nggu. 4f it is induced by a proximity. We denote by %° , %’c ,
,',',_5 ﬂs i ‘u»:U _Tesp., the full subcategory of 4 determined
. W the proximally coarse semi-uniformities, etc.
: Theoren 4,8. The categories T5_, and ﬂc, ?

s

and
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e a ) e : ‘
Uu,, ?u and qzu , &, and ‘ZI’ ,  Teep.,are isomorphic. .
The competent isomorphism is -0

4;62.; (¥ lye )'4, d;/ﬂs, = (’f/‘lt: ! 4’#‘; =(1r/a$ );4¢03y"(v/“;v y' resp.
Theoren 4.9. Bach object of %y has its lower modificatiem

in g’s-u and each object of %% has its upper modification in

%‘ . Moreover, the upper modification in %c of an object of

74 /4 4 :
Ug, Uy, Usy, resp., is an object of U, U, , U resp.

Hence each object of %° has its upper modifications im Qi; ’
%5 , 2{.:” and each object of 5:_,, has its upper modifica-

. e
tioms in 37’} ’ -‘?U ; %y - Each object of - u, ‘Uaf, resp.,
has its lower modification in ‘21,: , U

su resp. and so each
object of f_ -93 resp., has its lower modification in .

@ 3 psu ‘rlep.
corolleryl. £,,2,%,2,, U5 ul,ut, %,

ONTR R R TR
sre S -categories over A with respect to the forgetful

functors.

Copollary 2. £ _, is inductive in  , £ 1is pro-

S
Jective and inductive in R _ , % is projective in

(Is,-u , @u is projective in 5’5_‘;, .'7; , % and inductive
in 4 . (It is easy to prove that % _, is hereditary
inf, £ 1s coproductive in £ _, and fence that £,

is coproductive in % _, , 2 ) U° i projective and
cohereditary in u . Other assertions about uf follow
from theorem 4.8 and from the first part of this corollary.

Remark 4.4. It is almost self-evident that % _, is not
productive in - B, and that ’lt: u 1s not coproducti~ -
vein WUy, . The fact that U is not coheredi~ -
tary in ‘?l.i (and hence that &, - 18 not cobersdi~:
tary in % ) follows from example 3.2. S »

. Theorsm 4.10. Let < P, ¥ be the upper modification 1’:3

2% of a semi-uniform spage. I(ZSP’ U> . U, VD




then

1) {UIV e U, {Ufx)Ix e P? 1s a finite aaé} is a ba-
se for ’V;

2) Du{MIMe €(PxP),€n€(ExM' xELM') 4 & for
each subnet M’ of M §.

Theorem 4.11. Assume that ( P, f1,> 1s a momotone proxi-
mity space, { P, o, > the lower modification of { P, f1, >
in 2_,, <P 1, 0 the upper modification of P, 12, >
in &, <P py» the lower modification of (P, n,>
ia K, ;e {U 1XcPF .  Then

1) 1‘;1 generates f1 ! ;

2) Uy~ U{MUlIZe n}i is & finite co-
ver of X{ forall X< P; .

3) {<M,X>IMe€(P), Xc P, thereis an N e €(X)
such that IN = I M and <M’ EN'> € Po for
eny subnet M', N’ of M, N resp., with IM'=IN‘}
genepatel ©1 5

4) f, = 4 v 1"‘1.\15

5) UL = {YIYe U am P-xs'u;_yg for
all Xe P; '

6) p, ui<M,X>IMe C(PK XcPpn(LX)X(EM'))+ B gop
any subnet M’ of M{  generates ®,

7) 4%, 1is generated by g"' where ¢ 1is generated by
Py

8) {¥!¥Ye P, there is a finite cover (f of X such
that for any Z € 4 either Y € ’d: or P-Ze¢ Zt:_y}
is a subbase for u; for all XA c P;

9) @, = {<M,X>IMe€(P), Xc P, there is an N € € (X)
such that <M', EN'> e p, , <N', EM' > ¢ ©1 for any

subnets M', N' of M, N  resp., With M’ ~ IN' ¢ .
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Remark 4.5. The upper modification in .’/?, of an objeect
(P, > of @-u may be constructed by transfinite indue-
tion: '
o = T
P-{<X -
ﬁ;=wa¢&ﬂ. {( ,y)‘((X,P Z),{Z)y))ﬂflup-u for asome

ZecPpie ¢=¢§'+1

e = Uiy I$'<¢ in the remaining case.
All ﬁ; are semi-uniformizable proximities for P and fz?, <®
<»f1.§ provided §'< f . Hence there is an ordinal number f
such that zf!»; = T¢,s - The proximity space <P, 1% >
is the upper modification of <P, pp > in &, .

Ifmff—*{u)lecP} then a}f- {ful
there is a monotonely densely ordered set A with the first e-
lement o«  , with the last element o, & oc, , and there is
{Uslxe Ay such that L = U, %1~X and U/, €
€ ’ZLL‘," if &« < «’ (take for A dyadic rational num=

’

bers in [ 0,17 ).
By remark 3.4 the upper modification in % of an up~

per modification of <P, > in % 1s the upper modifica-
tionof <P, ~> 4in £, . We cannot commute & and
2,’ in this method as it is shown in example 3.1 (put P fi-
nite),

It follows from example 3.1 that a symmetric proximity
space need not bave the lower modification in % ormin J, -

Exagple 4,)1. We shall show that an object of 4, need
not have the upper modifications in % , %, B , %, .
Let {X_: lxeA;f, (£=1,2), be two disjoint covers of a
set P (i.e. R, = U{K: xX: lce A, § are equivalences

on P ). Hence
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e XYY IXUYe P, YAULXE lw €A, , XaX 4 8] 4 0}
are symmstric uniformizable proximities for P. If R,- R,* 8,

1=R, 4B, then fn; N fr, dis not a proximity; s 7 f22
genesrates

={(X, Y)anX *& i€(1,2),YnX] nX_(‘#R for somea € A;§-
Let there exist aC € A )%, € A such that )Sx. X‘_ + 8,
X‘ #8 and that X! A X’z 8. Then

)(‘\,.,.)(22)1;’)(, n)( ), ()‘(‘: -X’ )monfu()(,,_, ) chz) ’
‘X: X,,‘ )mm»p(/\:‘ " X ) and eonsequentlyfz is a monot one
non aemi-uniformizable proxinity. Hence ( P, 17t has no upper
modifications in ?s-u » ‘?_, ) Z", ’

Theorem 4,12. Suppose that % 1is a given proximally coar-
‘se semi-uniformity for a set P, g =supn{finr%7. 1# g >

»{U,IXcP? then %,,={Ulx]IUe W%} forall xeP
and ’ZCX-(P) provided Xc P, caxd X >1 .

Proof. Assume that card P>1 . Then g = supn {1"(@,10 I
I¢a,&>€PxP~ A4, ¢ where ﬂ(a,b)"’(?/; IXePf, Y =
~{ULXI1Ue Uf 1£(a,b)-X4 8, U =(P) otherwise.

Lepng 4.1, () Let %, (x e A+ B ) be semi-uniformities
for a set P. If -%, — f1, e@nd if all %, except one are po-
ximally coarse then wnf U, — m;@_u T -

(b) Let i, (@ € A+ B ) Dbe monctone proximities for a
set P. If n — %, eand if all g, except finite number are
semi-uniformizable then sup fy, —» Sufiye Ux °

Proa’ It 1s sufficient to suppose that A= (1,2) .

. (a) Let %, be proximally coarae, nf (Uy, Uy ) = n’

wmfp ()= 1. Evidently p’ < 1o, If Up= U(X; x ¥ |
14 e‘.{}e U, X lie 1§ 1is a finite disjoint fanily, U, ¢ U,
then

(Upn U XTI ULCU A U LK A Xp D1 e 1] mUfU [Xa XD AY, [T 15
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A i

~

Hence each neighborhood of X in ( P, nn > 1is @ neighben,
hood of X 4im <P, n > . Consequently s < r’.

(b) Lot aup (o, 2,)—> U oup (U, U, )= U . Bvidenty
U<U'. I UcU then UoU(X! x ¥ lscely,

Us U{X} % ¥} ljeI} wnere {X] Iielf, {521 €T} o
finite disjoint covers of P,

Xmmp (P-Y]) foralliel, Xjmonp, (P=Y2)
torall j 6 J - ‘ .
So U contains U{ (X1 A X; ) x 0.2”“ };-z)'“:';j)‘ I1xJ¢
which is an element of %' . Consequently %’ < % .

Theorem 4.13. Let %, ¥ Dbe semi-uniformities, f1, @
be monotone proximities. (a) If U -1, Vg, f: (P,fz)—*'v
=< Q, q ? 4s a proximally continuous mapping then there ja a
semi-uniformity '~> ¢  such that f: <P, U>—> <G, )
is uniformly continuous; there is a semi-uniformity (Vi 7
such that #: <P, U'> =< Q, > is uniformly conti-
nuous if and only if fo 4is fimer tham fo, which is induced
by {UIPxP:U:(-Fx-F)"’CVJ for some Ve V' f .

D) It n—>U, 2>V £:<P, U>><R, 1> 1is a uniformly
continuous mapping then there is a proximity »f:.'u—» U such
that ¢+: <P, n'> = <@, ¢ is proximally continuous;
there is a proximity ¢’ — 77 such that f: <P, 2> —=<§,9">
is proximally continuous if and only if ¥ 18 coarser tham 'I/,’
which is induced by {< X,¥>/Xu Ye & | either XA Y4
«8 or t'IXInfLYIF.

Proof. We shall prove only (a) because the proof of (b) is
similar. The first assertion is obvious. Let{(fxf) LVIIVe Uy
be a base for U,. There exists % — f1  such that
$: <P, u”)v-» (Q, ¥ > 1s uniformly continuous if and omly
if there existes U’ —> n, WU’ < U, . But this is equi-
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valent with the condition im our theorea (put U=onf (U, , U
where . — %, and use lemma 4.1 }.
e .
corollary. andv,,whorom,:%—”u R
graph y; = graph Y,  are projective and cohereditary fun-

ctors.

$, $,,%,, & and @, are inductive and hereditary fun-
ctors

(b, U Ry Parhd =gaph &; da:%—'?,whdz=wf»%s;

és : 'uu - 7;/ ) Praph éf graph ¢4I£u;¢‘l : q‘su*@’W@'WQ/%U.)

Functors @/lu_s , &, /‘us , & /ﬂsu are inductive and heredi-
tary.

Functors ¢/oz¢u, &, /ouu y g, 5 @ u,, 8, ‘ug, are coproduc-
tive and hereditary.

Remark 4.6.(a) The fact fhet functors &, /%U , 9, /.usu
(i#3,4) are not cohereditary follows from that asbout im-
‘bedding T, 2 (see remark 4.4). It is known that
functors ¢§; end §; /‘ZL,- are not productive (see e.g.[2]).

(b) The assertion about inductivity of §, means that the
operations takihg the upper modificatiom in U of objects
of % end taking inductive limits commute. But we can turn
put this assertion directly from the following general proposi-
vtioa which is a corcllary of theorem 1l.2:

Let lz‘. be aR S -category over ¥ with respect to a
covarient functer T, , 4&, a subcategory of &,, F a co-
variant functor from &, in lzz assigning to each object
of R, 1its upper modification in &, such that T, = T, F.
Then F 1s inductive. (Dually for lower modifications.)

5. Relations between nroximity and closure.
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Definition 5.1. Let p > fres{l | Xc P}7 . Ve
say that a closure « 418 induced by s (sign s2 — « )
if one of the following equivalent conditions is fulfilled '
(A e w > {Y IxeP]):

1) w4 = {<X,{x(x)pnX§>IXc P? s

2) ¥ = Uy forall x € P;

3) A ={{(M,x>I<M,(x)>epf .

Renark 5,1. We can define a covariant functor F: @Y=’
-> C in the obvious way. Evidently, FLPY] = FLR, 1= FLP J=(-
(put U, =n{Y Ix € X} far all X & ep’ P ).

If £:<P, n> >CQ, ¢ > is lower proximelly con-
tinuous, then f: F<P, a2 > F <@, ¢ need not be

continuous (see example 2.1).

Definition 5.2. We shall say that g glosure 1s symmetric
semi~- ormizable, u rmizable, s 1za
resp., if it is induced by a symmetric proximity, uniformizab-
le proximity, symmetrie¢ uniformizable proximity resp. Similar-
ly for closure spaces. We shall denote by C » €, , Cgy Tesp.
the full subcategory of C determined by the class of all sym=-
metric semi-uniformizable closure spaces, etc.

Theorem 5.1. For every closure « (A< «e>{¥% Ixe€ Pf)
there is a finest proximity i, .and a coarsest proximity 12,
inducing s (p; e f, > {U [Xc P3):

1) =X, ¥ XuYe P, either X N Y B
or WX-",KC“Y}; .

2) ’u;aﬁ udeﬂ,%‘:,:?C" fo x€P;

3) @, ={<M, X>IMe €CP), X P, either M 43 ¢~
ventually in X or X = (X?, <M, x> € A},

4) g =KX,V IXVYe P, either Xrn 4« Y#R -
or eaxd X>4, Y#ﬂf‘,

=131 -



5 Uy = (P)  sfeaaX>1,U% = 9 tor xeP;

6) P ={<M,X>IME€(P), Xc P, either card X> 1
or Xz (x), (M, x>eXry. :
f4 1is a momotone proximity. The finest monotone proximity
coarser tham ., is semi-unifprmizable and induces « . (Hen-
ce for every closure 4( there exist a finest and a. coarsest
momotone proximities induces 4« , a finest and a coarsest semi-~
uniformizable proximities inducing « .)

Corollary 1. Let s — «, g — v, f:1<P,u>—><Q,v?
be a continuous mepping. Then there exists 71 such that 72
—+« and f: <P, n"'> — <@, q? is upper proximally

comtinuous. f: <P, 2> — <3, 2" > is upper moxi-
mally comtinuous for some ¢ for which ¢’ —» 7+  if and
only if ¢t 'cvie u y for all V e ‘V; provided

FLY)=(x), where ver {V, xR}, pe>
~{U, 1Y Pi.

Corollary 2. F, F / F/ are projective
) % ’ ps’u proj
and coproductive functors.
Theorem 5,2. If a closure 4 is symmetric semi-uniformi-

zable then there are' a finest and a cogrsest symmetric proximi-
- ties inducing « . Let 4, be a closurs.There exists a finest
\amtric semi-uniformizable closure Ay coarser than 4,
and a coarsest symmetric semi-uniformizable closure «, finer
tham &, ; 4, 4is induced by the upper modification in 53

of the finest semi-uniformizable proximity imducing &, , «, is
induced by the lower modificetion in F; of the coarsest semi-
uniformizable proximity inducing «, . Each object of ¢  has

" 4ts upper modifieation in (g -

The closures mentioned above may be described like this:

if w; 34U IxePs,4i=0,1,2, then
T 4N wa K ufx I X, (X) B 3 for all XcP;
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2) U ={UIUEeU;, Usu, (x)? for all x & P

3) uX={xl it XaU{X;I< €I}, [ 1ea
finite set, then there is < € I  such that x € «, X
and either X, n u,(x) #+ 8 or card X; 3 X, ;

4) Uim{U-FIUCUS, PoF, Frux)=Beatd F <, 7 for all
xe P .

Corollary 1. A closure AL ¢ 'fu,'( Ixe P32 is sym-
metrie semi-uniformizable if and only if one of the following
equivalent conditions is fulfilled:

(a) the relation {<x,y >Ixe€ « () } is
symmetric;

() wilx)e N UX for all x € P;

(¢) w(x)=NU, far all x € P,

(@) if <x,y> 6 Px P and if oy ¢ U for
some U € Uy, then x4 V forosome Ve %, -

Corollary 2. C, is an S -category over J with res-

pect to the forgetful functor. (.', is projective and copro-
ductive in C.

Remark 5.,2. The class of all objects of C having the
lower modificatiom in Cs is precisely the class of objects
o Cg .

First we shall prove the following lemma:

Let <P, 4« > be an object of (g, < G, v+ > an object

’

\

of C, v’ be the coarsest symmetric semi-uniformizable clo-

sure finer than v, f: <P, > — <&, » ? be a con-
tinuous mapping. Then ¢ : <P, « > —> <3, 2’> 48 a con-

tinuous mapping if and only if £ IvIo « £ Cx1

for all x € & and for all neighborhoods V Af X » in

{@, v 7. (The proof follows from the fact that £: < P, « >3

<@, 'Y 1s a continuous mapping if and only if
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£:<P, > (@, ¢ >, where i is the finest symmetric
proximity inducing 4 and 3 is the coarsest proximity indu-
cing v, i.s upper proximally continuvous .)

If (@, + > 1is not symmetric semi-unifomizable closure
apa;:e, then there is8 X € P and a neighborhood V of x
in (@, v > euch that 2 (x) -V % 8 . Let <P, u>
be the space of real numbers , 4 € 7 (x) =~V , f =
#()e,00x(xNu (L0, L x(y)) ., Then f is a
continuous mapping < P, <« > — (@, 2 > and by the fore-
going lemma the mapping f: <P, «« > — <&, +’> is
not continuous. Hence by lemma 2.2 <@, v~ > has no lower

modificatior in Cs

Theorem 5,3. Functors Fép , F’ are prgective and co-
productive ( F’ :,.7"s — C's 5 sgtafa/u F’'= graph F'/‘.ps ).
Theoren 5,4. A closure space < P, 4 > is uniformizable

if end only if it is topological.
Proof. If .« is topological then the finest monotone proxi-
mity indueing « 1is uniformizable. The converse is clear.
Corollary 1. Every uniformizable closure « has the fi-
nest uniformizable proximity 4 indueing « ( s is the fi-
nest monotone proximity inducing « ). Every object of C has
its upper modification in (, and hence (, is an S =-ca-
tegory over M. with respect to the forgetful functor.
Corollary 2. Functors Fp F are projective
(F': R =, , graph F" = W:ﬁlp F/) €, 18 projective in C.
Bemork 5.3. It is easy to prove that fi» F are
eoproductive functors and that (, 1is coproductive in C .
Iheoren 5.3. Every symmetric uniformizable closure .«

has the finest symmetric uniformizable proximity Vil inducing
“ ..
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Each object of ( has its upper modification in (;, and
hence (;,, 1s an S -category over M with respsct to the
forgetful . functor.

Proof. #1 1is the finest symmetric uniformizable proximi-
ty coarser than the finest monotone proximity inducing «¢.

Corolary. Functors F/@u , FM CF" 2, Cy
graph F" = quaph Féw ), F'/yg_u 5 F”/_.?’U are pro-
Jective. C,, is projective in (, (5, C, -

Theorem 5,6. A closure space € P, « > is symmetric uni-
formizable if and only if the following condition is fulfilled:

U 1s a neighborhood of x im (P, « > 4if and only if
there is a monotonely densely ordered set A with the first
element o, , with the last element o, # o, and a family
{U ,lx €A} such that U= Ug, , U, = (x) ana U >
>« Uy 5 U is a neighborhood of Uy, in ( P, « >
provided o« < x’. ’

Proof follows from remark 4.5.

Remark 5.4. Now, it is easy to prove that F'', F/ysau ,
F’/ysu , F'/p,, are coproductive functors and that (s, 1is
coproductive in C, (5, C, . .

Theorem 5.,7. Every locally compact topologicalﬁapace
{P, « > (i,e. each x € P  has a base of compact neighbor—
hoods) has the coarsest uniformizable proximity inducing -« -

Proof. It is known that if a unif ormizable proximity
r e {U 1 Xc Py induces « then /X, =
= N{U,,|xeX]} provided X 1is compact. There is
& coarsest semi-uniformizable proximity s with this property
(p={< X, ¥Y> | 4f & is a fimite cover of Y then there
is Z € O euch that X'n Z + B for each compact
X o X} ) Thj..a proximity is uniformizable provided <
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is locally compact topological.

Corallary. Every locally compact symmetric uniformizable
space { P, & > has the coarsest symmetric uniformizable pro-
ximity indueing « .

Proof follows from the fact that for every unifomizable
proximity 4v there is a coarsest symmetric uniforsizable pro-
_ximity finer than h .

Remerk 5.5. It is shown in [1] that the converse of the
foregoing corollary is true, too.

Theorem 5.,8. The coarsest uniformizable proximity o in=
ducing a given closure w« 1s the coarsest uniformizable proxi-
mity finer than the coarsest semi-uniformizable proximity g
indueing « 1if and only if o =g -

Proof. Suppose that .fo + ¢ . Then there is an infinite
set X in P=UDw and aset U+ P such that
X men pn (P-U). The coarsest uniformizable proximity 4«
inducing the discrete closure far P is finer than ¢ but
it 4s not finer tham s, because X mon 2 (P-U ) if and
only if U= P ..

Remark 5.6. It can be proved that no non-uniformizable se-
mi-uniformizable proximity < has the coarsest uniformizable
mximity finer them v . '

6. Relations between semi-uniformity and closure.

Definition 6.l Let U «» YL, A u > {VUx I x € P} -
We say thet « is induced by a semi-uniformity % (eign
U —> « Jif DU U =P and if one of the following
equivalent conditions is fulfilled:

1) w2 {<X,N{UTXTIVeUI>IXGPS;

2) Y e{U[XJIU ¢ U} for all X € P ;

- 136 =



3) A=4{<AM,x>IMe, E«ocM=(.x)}.

Repark 6,1. We can define a covariant functa G : % —»C
in an obvious way.

Theorenm 6,1. Let %L be a semi-uniformity, « be a clo-
sure, fi be a proximity. s

If U-—>n them U —> 4« if and only if
fo = « .

If n—> U then A — « if and only if
U —> w
Cg;ollem. G = F/y ° 2[", F(? = G o @, G[’lt]=C,
™ M
G[%SJ=CS, G[’Ltu]-_-cu, G'f’Z(,SUJ=CSU o }
Theorem 6.2. For every closure « (A <> w > {Uy lxe P})

there is a finest semi-uniformity ’IL,, L d ‘€1 inducing «
and a coarsest semi-uniformity %2 L {2 indueing 7R
) U ={Z{VlxePllIV, eV t;

2) €, is generated by {MIMe € (PxP), Ex M = (x)
for some x € P, (AM,x>€ A };

3) uzzfulUchP,chJEZ{; for all x € P,
cand {x 1Ury 7 # Py <, 33

4) £, ={MIMeC (PxP)LLBM, x>e A for each sub~
net M/ of M such that £ M’ = (x) for some X € P7 .

Corollary. Every symmetric semi-uniformizable closure .«
has the finest and the coarsest symmetric semi-uniformity indu-
cing 4« . Every (symmetric) uniformizable closure « has the
finest (symmetric) uniformity inducing 4« .

Proof. Take the competent modifications of u, and le .

Theorem 6,3. If (P, « > is a locally compact topolo-
gical (symmetric uniformizable) space then there is a coarsest
(symmetric) uniformity inducing <.

Proof follows firectly from theorem 5.7.
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] ' Ramark 6,2+ It is showm in [1] that the converse of theo-
. Yem 6.3 is true in the case of symmetriec uniformizable spaces.
Theorenm 6.4. Let U D w, V> v, f: <P, u>>(R, »>
be a continuous mapping. There is a semi-uniformity %’ indu-
oing 4« such that f: <P, > —=> <Q, ¥ 1is uniformly
eontinuous. There is a semi-uniforxity 77° 4imducing » such
that £: < P, U D> —> (&, V' > is uniformly continuous

if and only if
(P - LxDIxPYuF IxIxf' [V 1) e X for all

x ¢ P and for all neighborhoods V, of x in <&, v ).
Proof.’Put the finest semi-uniformity inducing « for %’
and the coarsest semi-uniformity inducing » “far ¥ '.
Corollary. Functors G, G/,us, 6/%0 , G/'usu , 67, G'/'Z(,” ,
G’ G‘/u , 6" are projective and coproductive.
Su
L6 U €y G UG, G UG, aph G euaph Gy ete.
Proof. Only the assertion that G/ is coproducti-
- v
ve 1s necessary to prove directly. '

7, Congluaion.

T.l. Every proximity n «-»{ux IXecPxP} deter-
mines a semi-uniformity U = U, p for P .
On the other hand every semi~uniformity U for P determines
a proximity fn > {U, I X c Px P} smhthat%AP-u.
It is sufficient toput {Ue X | U € U } for a base

pf each U, (i.e. KPxP,pndaywyl<P, V) x <P, U>] whe-
e 7 is the finest semi-uniformity for P ).
It follows that a covariant functor ?‘ YU - Ty

definied in this way
&(p,u)-‘v[<P,V’)x <P, u>1,

graph § f = qrank f x graph £ (relational product)
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is an isofunctor.

If we restrict our attention on U, we can put

FPUI=y[<P, U >x <P, U>] where U = {U"IUeU]-

7.2. Every closure « ¢ {%, |Xeean P} deter-
mines a proximity i, <> {{U{YIYeU}IUe ux} IXePjp.
Every proximity &> {¥ I X c Py determines

a closure « for eyt P such that 2 = 2, . It is suffi~.

cient to put

“w e {({UIU > wn V for some Ve Uy § /X e ep P} -

Hence the covarient functor & : R — C (grank Gf =
= {<{X,U{fx | x€e X}>IXeepn P}) 1s an isofunctor.
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