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Commentationes Mathematicae Universitatis Carolinae 

6, 2 (1965) 

ON CONTINUITI STRUCTURE AND SPACES OF MAPPINGS 

M. KAlSrOV, Praha 

A type of "continuity structures" £cf. 7J is considered. 

The spaces in question occur, e.g., under the name of "quasi-

uniform spaces" in [5] (where some further references are*gi

ven), and under the name of "P-Raume" in [4]. They have been 

also used implicitly, as tools for investigation of topologi

cal spaces, e.g., in [4]. In the present note, they are cal

led "merotopic" • The main results (section 3) concern apace8 

of continuous mappings (of spaces belonging to a somewhat nar

rower class). These results are closely related to some known 

theorems on spaces of mappings of topological spaoes [1,3 ] 

and of "quasi-topological" [11] ones. Thus* equalities such 

aa («*>* & y * * * are obtained, and it is proved that, 

roughly speaking, a merotopio apace X has a base (in a ape* 

cific sense) consisting of totally bounded seta if and only 

if every Vr , y topological, io a topological merotopio 

apace (i.e., it a etructure ia induced hjr a topology)* 

In addition to the main propositions, other raaulta are 

included; aaaa of these are needed in aeotioa 3, vhereao 

othere, although eesentially re-foraulationa of known propo-

• it lone, nay deaerve an explicit •tateaont in a new context* 

Moat proofs are omitted. Sons of the oaitted proofs aa 

wall aa some further results and examplee are intended for 
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publication in another paper. 

1. 

1.1. As a rule, the notation of E. Cech, Topological Spa

ces (rev.ed., in press) is adopted. It is close to that used 

by N. Bourbaki, and only some deviations need be explained. 

If X is a set, then the set of all X c X is denoted 

by exp X . If 771 and 71 are collections of sets, then 

L7711 n L711 denotes the collection of all M n N , M e 

€ WL I N € W . If 01 7 & are collections of sets 

and for any A e C/C there is a B € & with B c A , 

then we shall say that & minorizes OC . 

If f is a mapping (or a single-valued relation), then 

its value at a point (element) x will be denoted by fx ; 

if X is a set, then ffXJ will denote the set of all fx , 

x 6 X . If P is a set of mappings, then FCXJ denotes the 

set of all fx, f e P , x € X ; cf I 7711 , where of 

is a collection of sets of mappings and 771 is a collection 

of sets, denotes the collection of all P[MJ , P e of , 

Iff € 77% - , etc. 

There is a sharp formal distinction between families 

{x^la € A | and collections (in particular, between families 

of sets and.collections of sets). However, this distinction 

will often be disregarded, and, e.g.jproperties defined for 

collections of sets will be carried over to families of sets 

and vice versa. We shall also often use the same symbols, e.g., 

for a space and for the set of its points, etc. 

1#2# The following evident proposition will be useful. 
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Lejffia. It ef i s a f i l t e r , er - .U 771* , then some 

771. minorizes of • fa 

1.3 . The definition of closure spaces may be recalled. 

Let E be a se t . A (binary) relation x. on exp E which 

asaigns exactly one set r X c i to every set X c E wi l l be 

called a closure operation on E i f ( i ) orft - $ , ( i i ) 

T (X u X) - T X u r X , ( i i i ) X c r x ; <E f<r> wi l l 

then be called a closure space. If, in addition, f ( t r X ) « T X 

for every X c E , then t i s called a topological closure re

lation (or simply a topology) and ( E, t: > i s called a to 

pological space. Clearly, this concept i s equivalent (in an 

obvious sense) with that of a topological space defined in the 

current manner by means of open s e t s . 

1.4. Definition. Let E be a se t . Let a non-void system 

r of non-void collections of subsets of E be given, such 

that 

(1) i f 771 e P , 7)1 c exp E and 77t1 minorizea 771 , 

then Dtl^ e r j 

(2) i f 771^ u 77l1 e r } then either 771, e P or 

^ * P . 

(3) i f x £ E , then ((x)) e F . 

Then we shall say that P is a merotopic structure (or 

merotopy) on E and ( E, P > is a merotopic space; every 

collection 771 e P will be called P -micromeric or 

X -micromeric (or simply micromeric if the space is clear 

from the context). 

Remark. In "merotopic"f the first part of the word comes 

fribm the Greek "meros" - part. As shown below (3.10), impor-
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tant merotopic spaces are generated by topologizing certain 

parts of a set. Thus wmerotopologicalH should be used, and that 

only for a narrower class of spaces; however, we prefer an ab

ridged term used for a wider concept. The expression "microme-

ric collection" corresponds to the Russian "sistema s malymi", 

see e.g. [10] . - In [5], the term "quasi-uniform" is used 

for spaces equivalent (see below, 1.20) to merotopic spaces. 

If the standpoint of the present note is adopted, i.e. if me

rotopic spaces are the main objects of investigation (these 

generalize uniform, topological, etc. spaces), the name "qua

si-uniform" seems less appropriate. 

1.5. Definition. If P * Ĥ  are merotopies on E and 

P c H-| , we shall say that P is finer than P^ and 

that P, is coarser than P f and we shall write P 6 HJ • 

Convention. The set of all merotopies on a given set will 

always be considered with the order just described. 

!•*>• Proposition. The set of merotopies on a given set is 

order-complete. If { £ } is a family of merotopies on E , 

then sup £ « U Q . 

1.7. Pefiftitton. If < E,, , q > , < E 2 , rz > are me

rotopic spaces, then a mapping f J (E^ ; P1> -4 < E f Pj, } 

la called continuous (more specifically, merotopically conti

nuous) if f C H, J c P2 . A bijective continuous mapping 

f is called an isomorphism if f is continuous. 

1.8. Merotopic spaces as objects and their continuous map

pings as morphisms form a category, which will be denoted by 

M -
1.9. ggoppsWon, a,nfl aeflfl-rUpn* Let < E, tr > be a clo

sure space. For any x € E , let W be the collection of 
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a l l neighborhoods of x . Then the system f̂  of a l l 

7H c exp £ minorizing some %c Is a merotopy. We shall 

say that rj, i s induced by the closure operation n: , or 

that i t i s closure-induced. If r i s topological, then we 

shall cal l f̂ , topological* 

1.10. fr9p9g^J9ft qnc, fltf toitflgn* Let < Ef cT > be a 

proximity space. Let Vj* consist of a l l 7/i c exp E sa-

tisfying the following condition: If E * L) A^ and A^*f 

B^ f k =- l 9 . . . | n , are d istant, then, for some k and some 

H € WV , M n A 4 + d , M n B ^ a j f i . Then r^ i s a 

merotopy on £ • We shall say that i t i s induced by the proxi

mity cT or that i t i s a proximally induced (or simply a 

proximal) merotopy* 

1.11. PlT9P99m9n anfl <1ftf1nJ,t 1,911* Let < Ef W > be a 

uniform space. Let H^ consist of a l l Title exp £ such that, 

for every U € *Ul f there i s a set M £ Wl with M ^ 

x Mc U . Then fl* i s a merotopy on £ • We shall say that 

r* i s induced by tyt or that P i s a uniformly induced 

(or simply uniform) merotopy. 

1.12* It i s clear that i f CI i s the category of a l l u-

niform spaces, the functor which assigns < E, rj^> to < E,<W> 

and f : <E, f^ > - » < E% R^ > to f : < Ef W> -*< E^ W*7 

i s a one-to-one covariant functor from LI into MI . A 

similar assertion holds for the categories of closure spaces 

and of proximity spaces. 

1.13 . Definition,. Let K be a class of merotopic spa

ces; l e t £ be a s e t . Let {*&} be a family of mappings 

* : **W """* E w h e r e £*, «r* merotopic spaces. I f there ex

i s t s a merotopy P such that 
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(1) < .*, r > € K , and all f^ : £^-* < E, T> are con-

15.nuous, 

(2) if < E, 0 > e K and if all f^ : £^ -* < E, a > 

are continuous, then P £ © .j 

we shall say that P is inductively generated in K (for 

short, K -generated) by the family {t^j .If K consists of 

all merotopic spaces, we shall simply say that P is (inducti

vely) generated by {f^/ . 

Let {g^J be a family of mappings g*. E —* y , where 

% are merotopic spaces. If there exists a merotopy P such 

that 

(1) < E, P > Є K and all g.: < E, P > -* 2/̂ . are 

continuous; 

(2) if <E, 0 > e IK and all g^: < E, 9 > -» % 

are continuous, then 8 i? T
 ? 

we shall say that P is protectively generated in K (for 

short, IK -generated) by the family {g^ ? • If IK consists of 

all merotopic spaces, we shall simply say that T is (projec-

tively) generated by is^j • 

1.14. .Proposition. Let E be a set. Every non-void family 

{^J of mappings t i X^ — • E (respectively, t : E - ^ S ^ , ) , 

where IQ, are merotopic spaces, inductively (protectively) ge

nerates a merotopy on E . 

Remark. The system U ^ C £ J is fundamental (see 1.17) 

for the merotopy inductively generated by f : < X^ ? f^>—»E • 

1.15. Definitjop-. If X is a merotopic space, then the 

space generated by a surjective mapping f : X —•> E will be 

denoted by X /f and will be called the quotient space of X 

by f . 
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1»16. Defini t ion. If < X, P > i s a merotopic space, 

X c X , then the space project ively generated by the i den t i t y 

injection of X in to X , i s called a subspaoe of < X, P > . 

Clearly, < X, 0 > i s a subspace of < X, P > i f f 

X c T and 6 » P H exp exp X . 

1.17. Dft^fnition., Let < E, P > be a merotopic space. A 

system 9 c P i s called a P -fundamental system (of mic-

roaer ic col lect ions) i f P i s the leas t merotopy on E con

ta in ing 9 as a subsystem. A col lec t ion &<z exp E 4.8 

oaUed a base for < E9 T y if there ex i s t s a fundamental 

system 8 such that 1ft e 9 implies 77L c & . 

fimirlftf i If T i s a topology on E , then a col lec t ion 

Of open sets i s a base for < .*, r > if and only if i t i s 

an open base of < E, T > • The void system i s fundamental 

i f and only i f P i s the f ines t merotopy on E • 

1.18. pgfl-H"**1 pflt Let < E, P > be a merotopic space. 

Then a col lec t ion TO c exp E wi l l be called a cover of 

< E, P > or a P -cover (or a merotopic cover) if , for any 

1ft e r , there exis t V e TO and I e W with M c V . 

1»19» Definit ion. Let E be a s e t . A non-void system XL 

of covers of E ( i . e . of col lect ions 10 such that U20 * 

* E ) i s called a quasi-uniformity £see 5; cf. a l so , e . g . , & 

and 9 J on E i f i t i s a f i l t e r under the refinement order, 

i . e . if*the following hold: 

(a) i f ty e SL , 7%) i s a cover of E and TO ref ines 

7)0, then 7)Q e fl ( b ) i f V e fL ^ 7)0 e IL , then 

[ 101 n 17)01 € IL . 

1.20. Proposit ion. Let E be a s e t . If P i s a meroto-
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py$ then the system of a l l P -covers i s a quasi-uniformity. 

For any quasi-unif ormity -Q. on E , there exists exactly one 

merotopy P such that It consi9t9 of a l l P -covers. 

Remark. According to this proposition, merotopic spaces 

coincide, essent ia l ly , with quasi-uniform [5 1 spaces. 

--•21. -Proposition and definition. Let < E, P > be a me

rotopic space. For any I c E l e t T I consist of the 

points x £ E such that the col lect ion of a l l (x,y) , y e X, 

belongs to P . Then ^ i s a closure operation on £ . It 

wi l l be called the closure operation (or the topology, i f this 

i s the case) induced by P • 

1.22. Definition. Let < E, P > be a merotopic space. 

Let f* be the topology (necessarily completely regular) 

projectively generated, in the obvious sense, by the ring of 

a l l continuous real-valued functions on < P - E > . We shall 

ca l l T * the topology CR-induced by P • 

Evidently, the topology tr induced by P i s completely 

regular i f f i t i s CR-induced by P . 

2 . 

We are now going to consider certain special classes of 

merotopic spaces. The most important of these are the filter 

spaces (related concepts occur under various names in the li

terature Tsee, e.g.,8 J ). 
2*3-» Definition* A merotopic space < E, P > will be 

called a filter-merotopic space or simply a filter space if 

there exists a fundamental system for P consisting of fil

ters* The subcategory of Ml whose objects are all filter 
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spaces will be denoted by F. 

S^OTPil??- If < E, tr > i s a closure space, then < E, P r > 

(see 1.9) i s a f t l ter -merotopic space. I t can be shown that i f 

< E, 4C > i s a metrisable uniform space, then < E, P ^ > i s 

a f i l t e r - space i f f < h$ U > i s the union of a t o t a l l y boun

ded and a uniformly d i sc re te subspace. 

2 .2 . Proposit ion. If < L, P > i s a f i l t e r space, then 

the following condition is s a t i s f i ed : if % i s a T -cover 

and if, for every U € *Vl , 1Q i s a P-cover , then .the 

col lec t ion of a l l U n V , U e <W. , T e V)u , i s a r e 

cover. 

Proofs Let TPtl e P be a f i l t e r . There ex is t s a set 

H0 6 W such that M0 c U0 for some Me € WL . Denote 

by *?Jle the col lec t ion of a l l M £ W contained in I!,, • 

Clearly, 7K9 i s micromeric, hence there ex is t s a set T0 e 

€ tyu * a n d a s e ^ Mo € ^ ^ such that M c V , hence 

*Lc U n V • 
O o o 

Remark. The converse does not hold, however, even for uni 

form spaces, since a loca l ly f ine Csee 51 uniform space need 

not be a f i l t e r space (cf. below, 2 .13) . 

2 . 3 . Proposition and def in i t ion . Let P be a merotopy on 

E • Then the system P* of a l l those WL c exp E which 

minorize some f i l t e r af € P 9 i s a f i l ter-merotopy; i t i s 

the coarsest fi l ter-merotopy f iner than P . The merotopy P 

wi l l be called the f i l ter-modif icat ion of C • 

gjgamjalfi.* Let *VL be a uniformity on E and l e t 

< 7T £ , *T % > be a completion of < E, % > . Then < E, q£ > 

is a subspace of 7T E endowed with the merotopy induced by 

the topology of <7r1£.% trr *Ul > • 
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Z #4. #« are now going to introduce two properties of me** 

rotopic spaces analogous to regularity (complete regularity) 

of topological spaces. 

.Definition. Let < Ef P > be a merotopic space. Denote 

by X (respectively, X*) the topology induced (CR-induced) 

by P . For any 1}% c exp E , denote by fCJWJ (respec

t ive ly , f * t 3 W J ) the col lect ion of a l l t M (respective

ly , r * H ) with H € 991 • If9 for every Wt « P , 

X tTftl (respectively, T* LTftl) belongs to P , then 

P i s called regular (completely regular). 

Clearly, i f < Ef tr > i s a topological space, then 

< E, P^ > i s regular (completely regular) i f f < Ef T > 

as a topological space i s such. 

2 .5 . Clearly, every cover of a topological space X (or 

of a*uniform space) i s refined by a cover 10 with the follow

ing property: i f V * c 10 and Uip* * x , then V* 

i s a cover. However, an analogous assertion does not hold for 

merotopic spaces ( i t f a i l s even for closure spaces). 

therefore, there are two notions (at least) corresponding 

to that of a compact topological space. 
Bfft&HQM- Let < Ef P > be a merotopic space. If, 

for any P -cover Cff, , there i s a f in i te <g* c <£ with 

{JC£* * £ f then we shall oal l < Ef P >. full-bounded. 

(We use this term instead of the current "totally bounded" to 

avoid expressions such as "basically to ta l ly bounded" or even 

"partially tota l ly bounded".) If every P-cover (ff* contains 

a f i n i t e P-cover, we shall cal l < E$ T y precompact. 

Clearly, i f < E» tr > is a topological space, then 
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the following asser t ions are equivalent; ( i ) < I , t > is 

compact, ( i i ) < E, P% > i s full-bounded, ( i i i ) < E, P^ > 

i s preeompact. On the other hand, l e t < E, V > be an a|>~ 

so lu te ly closed Hauadorff topological space. Define a closure 

as follows: x € t/X i f f x Tin X 4» 0 whenever U i s a 

neighborhood of x . Then < E, CL, > i s full-bounded, 

without, in general , being pre compact. 
2 »6. JgSUft* *#e* < X, P > be a merotopic space; l e t 

7 be a subs pace. Then the following conditions are e^ui val

i en t : (a) X i s full-bounded, (b) for any fundamental family 

i ^ ^ i and any Ma € Wt^ there exis t a ( l ) , . . . f a(n) 

with U M ^ . % 3 X , (c) there ex is t s a fundamental family 

{WIQ,} SUC** t k s t , -̂ ©r any choice of Ma £ 3?£ , there are 

a ( l ) , . . . , a(n) with (J H | U i ) 3 X . 

2 .7 . Clearly, any subspace of a full-bounded (precoapact) 

space i s full-bounded (precompact). I f < t^ f f\ > 7 i » 1,2 , 

are merotopic spaces, f i s a continuous mapping of < S , P > 

onto < E- f f\ > and < E , P > i s full-bound ed, then 

< E* , f*L > i s a lso full-bounded. However, an analogous a s 

ser t ion does not hold for precompactness. 
2*8* Proposit ion. A merotopic space < £, P > i s f u l l -

bounded I f and only i f every u l t r a f i l t e r on E belongs to P -

Proof. I . Suppose that an u l t r a f i l t e r <f doaa not be

long t o r . Let V consist of a l l E - F , F c *f . I..et 

9 1 € P | as (f $ r , there ex i s t s a aet *Q c 7TI such 

tha t I c / iapl iea F - Mc + * • Since e^ i s an u l 

t ra f i l t e r , we obtain M#n F^ » £ for some F# « e^ . .Urns 

U c V - Te ty , and we have shown that V i s a 
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P -cover. Since Uty* + I whenever 10* c 10 is fini

te, this proves that < X, P > is not full-bounded. -

II. Suppose that < hf P > is not full-bounded; then the

re exists a P -cover 10 such that U10* « E for no fi

nite a?* c 10 . Clearly, the collection 2 of all E -

- U2?* , 10* c V finite, is the base of a filter. 

Let iyi D % be an ultrafilter. Then fl?Z * P , for 

otherwise there would exist seta V0 € 10 ? Mo € <#1£ 

such that Ua c V , hence M„ n (£ - V ) -* # , £ - V e 

c v^cSTt , which is contradiction. 
2*9* .Example* Let M consist of the numbers ± 1 , ± 2 , 

t J , ••• • Consider the merotopy P on M projectively 

generated by the bounded real-valued functions f satisfy

ing lim lf(n) - f(-n)l* 0 . Then < JE, P > is completely 

regular (this follows at once fr.om the fact that P induces 

the discrete topology). It is not difficult to show that 

( 1, T > is full-bounded, but is not precompact. 

2.10. Proposition. Every precompact merotopic space is a 

filter space* 

Proof. Let ( hf T *) be precompact. Consider a P -

micromeric collection 7TI ; we may suppose that j0 $ TTt . 

Consider non-void collections % c exp E such that, for 

any T1f... T n 6 V f the collection of all M 6 Wl con

tained in T^ n ... n T n is P -micromeric; let 0 be 

the system of all such % . It is clear that Q is monoto-

nically additive. Therefore there exists a maximal %* € 9 • 

Clearly, T1 € ^ * , T^ e ^ * implies ^ n T ^ * ^ * , 

and U ^ V * . We intend to show that %* e P 



Let % be a P -cover; since ( E, P > i s precompactf 

we may suppose tha t *Vl i s f i n i t e , <% » (u*̂  , . . . , U ^ ) . We 

asser t that Uĵ  € *#* for some k =* l t . . . t m • Suppose 

not; then, for k = l , . - « , m , there exis t T* . , . . . , T^ ^ € 

6 ^ * such that the collect ion/ ffllj^ of a l l U € m con

tained in TJ^n T^ n . . . T^ ^ does not belong to P • 

On the other hand, denoting by Wi' the col lec t ion of a l l 

M € Wt contained in each -P^ £ > k » l , . M , m , i a 

= 1 , . . . , h. 1 we have W e P . Since ^ ^ * P we 

have ffl¥ - W - *U Wt G P . This is a contradiction, 

because { uV ? is a P -cover, hence some M € 3#- is 

contained in some U^ (therefore, in UV ̂  T« . r» ••• 

n T^ ̂  7 which i3 impossible). 

2.11. Definition. A merotopic space < L, P > will 

be called filter-uniform if there is a uniformity 4/1 on £ 

such that P is the filter-mcdification of the merotopy in

duced by ^VL • 

2.12. Theorem. Let ( .0, P > be a utrotopic space. 

If ( XJ, P > is proximal, then it is preco-npoct, uniform 

and a filter jp^ce (hence filter-uniform). If ( jj,f P > is 

filter-uniform or precompact or topological, then it is a 

filter space. 

Pro.of. lit ( .M, P > be proximal. It is v/ell known 

that < .., P > is uniform and precompact; by 2.9 ( E, P > 

is a filter ipace. The second assertion is clear since a pre

compact ( oi, P > is a filter space. 

2.13. Theorem. A merotopic space is Cl) topological and 

prox.1 ...J. if and only if its merotopy is induced by a compact 
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topology, (2} topological and uniform if and only if its mero-
* 

topy i s induced by the toprftifegy (or the f ine uniformity) of a 

paraoompact Space, (3) topological and f i l te r -uniform i f and 

only i f i t s merotopy i s induced by a complete uniformity (or 

the topology of a complete topological apace), (4) a uniform f i l 

t e r apace i f and only i f i t la a dense subepace of a space 

whose merotopy i s induced by a paracompact topology. 

3 . 

3 . 1 . If { X^| a e A f i s a family of s e t s , then the natu

r a l mapping of X^ into the sum Z X ^ , which assign* 

<a, x > to x e X a , w i l l be denoted by i n j ^ • ^ae projec

t ion of the car tes ian product TH**,? o n *° *a, w i ^ ** deno

ted by p r o j a • 

3*2. Defini t ion. Let {X^f be a family of merotopic spa

ces , X^ < Xa , r^ > ; put X * r X^ . The apace < X, r > 

inductively generated by the mappings i n j ^ : X^ —•» X i s 

called the sum of {X^} and i s denoted by 2T XA • 

£ejBfc§£k. By 1.14, remark, the system (J i n j ^ C £ J i© 

fundamental for S. X^ • 

3 .3 . Proposit ion. If X^ are f i l t e r spaces, then _?Xa 

i s a f i l t e r space. 

3.4. If XA * < ^ ., Ta ) are a rb i t ra ry merotopic spa

ces , then various merotopies may be introduced on the set 

TT X^ ; however, each of these seems to suffer from cer ta in 

serious shortcomings. This i s a lso true for merotopies on the 

se t of a l l continuous mappings of a merotopic apace in to ano

the r . We sha l l not invest igate t h i s question here f for various 

kinds of products see , e*g», 2 , 2a 1 , and we confine our 
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examination to the case of f i l t e r spaces, for which there i s 

a natural definition* 

3*5* PtfVvliftiWn- ket {X^} be a family of f i l t e r spaces, 

%>a, a < xcu > rou > ; P u t x a ft XCL • T h e 8 P a c e < X» r > 

protectively generated in F (see 1.13f 2*1) by the mapp

ings prdj^ : X —•> X^ wi l l be called the cartesian (more 

precisely, f i l ter-cartes ian) product of the f i l t e r spaces X^ 

and wi l l be denoted by IT X^ • 
CL 

Proposition. A fundamental system for TT< Xa , f̂  > * con

s i s t s of a l l f i l t e r s afc exp (TTX )̂ such that proj^fo^J e 

€ P^ for every o, • 
3.6. rroppgttloa aafl fltflnmon* L*t x » < xf r > , 

y * < X9 A > be f i l t e r spaces* Denote by C the set of 

a l l continuous mappings f : X —• V . Then there ex is ts ex

actly one filter-merotopy 6 on C such that (1) the map-

ping of the cartesian product < Cf 6 > ** X into 2/ 

which assigns fx to < f f x > i s continuous, (2) i f a 

filter-merotopy yr on C possesses the above property, 

then y « 6 . The system of a l l f i l t e r s <f c exp C 

such that of C 1711 e & for every Wl c F i s funda

mental for 9 0 The set of a l l continuous t i X -+ y en

dowed with the merotopy 9 wi l l be denoted by yx and 

called the f i l t e r space of mappings* 

3*7* To make possible a concise and exact formulation of 

the theorem which follows, we shall adopt the following con

ventions: i f X, y f 7t 7 Xt, 7 V^ are merotopic spaces, 

consider ( l ) the binary relation consisting of a l l pairs 

< t f g > 9 t e V X m Z , g € (yx)% , such that 
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f (xt 2) * g(a)(x) , for any x € X , 2 e % \ this re

lation will be called canonical (for y x ~ %
 and (V*)x ); 

(2) the binary relation consisting of all < f, {g^J > , f e 

€ <y **>*, > ««, € y X * > such that, for any a and any 

x € X^ , f (a, x) -* g^ (x) ; this relation will be called 

canonical (for y*x*> and 77 V * ); (3) the binary re

lation consi9ting of all < f, {gaJ > , f 6 ( TT V^ )X , 

g a € 3^ such that for any x e X , f(x) » f g (x) / ; 

this relation will be called canonical (for (TTVJ* and 
CL 

X, 

TT ( V^ ) ). If it is clear from the context which of the ca

nonical relations is meant, we shall omit an explicit mention 

of spaces involved. 

A priori, it is not clear that the canonical relations 

&re bijective for t.t*e spaces in questions. This as9ertion i9 

contained, however, in the following proposition, in which 

Ji 25 f$ means that A , and Ji are isomorphic. 

3.8. Theorem. Let X, y , Z,X^9 2£, be filter spaces. 

Then 

y*~% * f y x ) * , 

yTX" * TT (yx°>) , 
c* ' 

More specifically, the corresponding canonical relations 

determine isomorphisms of V and (VX) 7 of 

y % X « > and TT (V*^) , and of ( TT & ) x and TT (V* ) . 

Proof. We shall prove only the assertion concerning 

y X ~ * and (V*)* . Let X ** < X, £ > , y « 
» < it ry > , « * < zf r2 > . Let f « v * * * • if 
a £ Z , let « (x) * f(x, 2) for every x e X ; then, for 
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every # 1 € £ , B^tWl • f £(x)J x£3WJjf hence g^ffctJc P^j 

thus g x i s continuous, g^ 6 y • Let g be the mapping 

which assigns gz to 8 e Z • If W e IJ , 032 * /J > then 

gfTlHWIJ a IT C ?t x WIJ € Py ; hence gLTtl i s microme-

r ic in 1/ . This proves that g i s continuous. We have 

shown that the canonic relation maps . y * into (V ) 

Similarly, i t can be shown that i f g € (Vx)* and f ( x , z ) -
s g(z)(x) , then f € y * . I t remains to prove that the 

Directive mapping determined by the canonic relation i s i s o 

morphic. 

Let of be micromeric in V x • Let of*" denote 

the col lect ion onto which & i s mapped. Then, for any QQtL € 

c rx , n e rz , the collection f*tniim]***ftm *m 
belongs to Fy . Therefore, a/'* LTL1 i s micromeric in 

yX
 9 for any 01 € ^ • this proves that of* i s micro

meric. 

3»9. Definition. A merotopic space < X, P > wi l l be 

called f i l t er - loca l i zed (or simply "localized") i f , for any 

micromeric f i l t e r <jf ; there exists a point x e X such 

that the col lect ion of a l l P u (x) i s micromeric. 

Example• A uniform merotopic space i s localized i f f i t i s 

complete (as a uniform space). 

3.10. Proposition. A merotopic space i s a localized f i l t e r 

space i f and only i f i t i s inductively generated by topologi

cal spaces. 

Br oof. Let < X, P > be a localized f i l t e r space. Then 

there exists a fundamental family { /JBfttL\ a tf A } such that 

every W ^ i s a f i l t e r with a non-void intersection* For 
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every a 6 -V , l e t a topology tr (a) on X be defined as. 

follows: an open base for < X , r ( a ) > consists of a l l 

M € $7%& and a l l (y) where y e X - H W l ^ . I t i s easy 

to show that the mappings 3 : < X, P^ C A > > -f X , where J 

i s the identity relation, inductively generate the structure 

P • - The rest of the proof i s omitted. 

3 .11 . h&SOIfr *** -Cj V be f i l t e r spaces. If y i s 

regular, then y i s regular. 

3 .12. Proposition. If X i s a f i l t e r space, y i s a 

regular localized f i l t e r space, then y i s also a regu

lar localized f i l t e r space. 

Proof. The space y i s regular by 3.11; thus we have 

only to prove that i t i s localized. Let of be a yX -

microaeislc f i l t e r . Then, for any x e X , the col lection 

tiftix)! i s a micromeric f i l t e r a.n#*therefore we can choo

se a point c/ (x) e X such that the collection gRil̂ all 

l [ i l u ( j?(x)) , F 6 of ; i s micromeric. Now Consider 

the mapping Cf : X —> y . Clearly, for any x £ X and any 

F 6 o^ | y (x) belongs to the closure x (F £xj ) of 

F [x3 .* Let in be X -micromeric. If x e M , M c WZ } 

V * <f f then F CxJ c F £M J t hence 9> (x) € r (F £MJ) j 

taua, for any M € 7/1 9 c/[Ml c *r (f £Mj ) . Since y i s 

regular, the col lect ion of a l l X (f £MJ ) i s micromeric, 

and therefore Cf t Wl J i s also micromeric. We have pro

ved that cy e 1/X . POP any F f / f put F * » F u 

%j (cf) i l e t «^* consist of a l l F * • Let 1tt, be X -

micromeric. For any M € 9?Z and any T e <f 9 F*£Mjc 

C t F [ M J ; therefore, 1/ being regular, the col lect ion 
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&*tTfll if l micromeric, This proves that If* i s l o c a l i -

zed. 

¥, 3 .13 . Definition. Let X be a merotopic space. If the

re exists a base <& for X consisting of full-bounded sub-

spaces, then X i s called basically full-bounded. 

It i s easy to see that a topological space i s basically 

full-bounded i f f i t i s local ly compact. 

3*14. Remark. It can be shown that quasi-topological spa

ces as considered in [21], coincide essential ly with basically 
•• 

compact merotopic spaces (i.e., spaces possessing a base con

sisting of subspaces whose merotopies are induced by compact 

topologies). 

3.15. .Proposition. Let X » < Xf V > be a localized 

filter space. Then X is closure-induced if and only if, 

for any x e X f there exists an Wl € P such that every 

r -micromeric collection TC with x c Cl 7% minimized 

UTt ; X is topological if and only if there exists a col

lection & with the following properties: for any x€ X f 

the collection -^ of all B e i£r with x e B is micro

meric; if 1TI is micromeric, x € Ci WL , then tit mi

nimizes «6^ • 

3*16. Theorem [cf. 1,3 1 • Let y be & regular topologi

cal merotopic space, and let X be a basically full-bounded 

filter space. Then 1/ is a regular topological merotopic 

space. 

Proof. By 3.12, V is a regular localized .filter apace. 

By 3.15, we have only to prove that there exists a collection, 

say of ; with the property described (for a collection & ) 

in 3.15. For any full-bounded T c X and any open U c l , 
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l e t P_ fl denote the set of a l l h e yX such thst 

hiTl e U . Denote by of the col lect ion of a l l ft £. 

and, for any t e yx denote by e£ the col lection 

of a l l P e c / ' containing f • 

V/e are going to prove that every a£ is micromeric. 

Let ffi be iC -micromeric; since X i s basically f u l l -

bounded, we may assume that every U e 771 i s full-bounded. 

Since f [7711 i s micromeric and H i s topological, there 

ex is ts a point y e y such that, for every neighborhood 

V of y f there i s a set M e 171 with f f Mj c V » Int U . 

Then r v e #* , f e F M ^ , P M ^ [ M J c V . This pro

ve* that J? £7711 i s micromeric. Thus we have proved that 

<jK i s micromeric. 

Now le t C0- be a y * -micromeric f i l t e r such that 

te € G whenever G £ <̂C . Choose an arbitrary full-boun

ded T c X and a neighborhood U of f ^ L T j . I t i s suf f i 

cient to fhow that there i s a set G e ty contained in PT . 

Let 77% be an X -micromeric f i l t e r . Then <£L77tJ is mi

cromeric and every non-void G [M'nTJ , G 6 Cp. % M e 

6 79t , intersects tc C TJ • It follows that there exis ts a 

set M « U(77t) € 771 and a set G » G(77l) belonging to 

(gt such that G[Mn TJ C U . Clearly, the se ts UiTft) n T 

form a merotopic cover of T . Since T is full-bounded, the-

re exist 77X, , • •. % flfl^ such that ^U^ M C?7l^ J o T . 

Put G*» ^ O Q(Tn^) . Then, clearly, g e G* implies 

*£TJ =* U g fM(afl^) n T3 c U . Thus, every g n O * belongs 

to P T y . We have proved that G * c P r a , G* £ &' 

3.17# Proposition,, If a completely regular f i l t e r space 
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X * < X, P > is not basically full-bounded, then the 

space f 0,1 J of its continuous mappings into the segment 

f O , U is not closure-induced. 

Proof. Suppose that, on the contrary, y » T 0,1 J is 

a closure-induced space. Denote by T * the topology CR-in

duced by P . For any x e X , put i£ (x) a 0 ; let # 

be a complete system of neighborhoods of the function i# 

in the space P . Since X is not full-bounded, there, 

exists an X -micromeric fflt such that no M 6 &l is 

full-bounded. Since V) is #"-micromeric, there exist 

V0 € 70 and M0 € Wl such that Vc LM01 c L 0t j C . 

Let *{ ̂ ta | a £ A J be a fundamental family for the me-

rotopy r . Since X is completely regular, the family 

{tr*f<£a]J , where v*[<£^3 consists of all ?* K , K * 

e A,^ | is also fundamental. Therefore, by 2.6, there exist 

sets K^ 6 ^t^ such that, for any choice of k(l),... 

.... k(n) , ". -.£-*.*-*«.+ '• 
Now, for any finite set B c A , let P^ denote the 

set of the functions f e £ 0,1 JX such that f(x) =- 0 

for x € U KA , f(x~) * 1 for some x e M^ (x„ deal a * » o> © o o 

pending, of course, op B ); since .M„ - U T*K -•» jfl , it is 

clear that no Fft is void. It is also clear that no Ffl 

is contained in 70 (since ffM^JcTO, j r for every 

f e T0 )• On the other hand, the systea of all Fft is mic

romeric, because for any ^kd)**9*' ôutfit) > * n e r e l s a 

set Fft and sets 1^., C A ^ y with * A C K^ ;]« (0) , 

i * !,..•, n . This is a contradiction* Thus, f 0,1 J* Is 

not closure-Induced* 
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