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Commentationes Mathematicae Universitatis Carolinae 

6,3 (19615) 

ERROR MINIMIZATION IN APPROXIMATE SOLUTION OF INTEGRAL 

EQUATIONS 

Jaroslav MILOTA, Praha 

In the present paper we shall study the approximate so

lution of Fredholm's integral equation 

(1) <f(x) - Xf K (x,t)y (i)dt - <?(*) 
0 

using the method of the degenerate kernel, i . e . by replacing 

the kernel K <x9 i ) by the kernel 
(2) K (*,t) ~ Za,k(x) tr H) . 
We assume that 

( KU,i)e Lx<0,1)» (0,1), 4(x) e Lz (0,1) , 

(3) ^ A is not an eigenvalue of the kernel K(x,i)* 

We suppose that the functions \<* h ^ -* »̂ *"? /n form 

an orthonormal system in L£ (0,1) • L^ will stand for the 

subset formed by the functions cu^ ( s ) ; — , CL^ Cx) -

The solution of the equation (1) can be approximated by 

the solution of the following equation 

(4> V*w'*>- */**,<*,*)%><*)** **<*> • 
0 

We shall suppose that we can find the exact solution of (4), 

that is we do not take into consideration the error of the 

numerical solution of (4). 

If the conditions (3) are satisfied, then 

(5) ( B - A K ) " 4 « E-i-AfJ -
Here E stands for the unit operator. In this paper we 
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shall use the following theorem (see f-fl), where I K - K I 

denotes the norm of the operator K - K^ • 

Thfiorga 1: If 
(6) U I I K - K ^ K H - U I I Q I ) < 1 , 

then A is not an eigenvalue of the kernel (2) 

and the inequality * *„,+ ,*.«„,.»_ 
i3urfrx)i(i«HAHgir, 

(7) l?f*>-^(*)l^*IK-KJI i.|AIIK-K^I(1*aiirkW 

holds* 

According to this theorem it is reasonable to find the 

minimum of I K - K ^ I when the Jbr (i;) vary. 

We shall use the following notation 

(8) etfare,L^> - ^ g 4^.,-* -* r i K ,"*lt ^* a ' l ^ r J i , , -
7ft i s the image of the unit sphere in Lz(0,1) under 

the operator K • 

yhaortffl 2: Set 

&<*) - /«<l'*>*k<f>*f 
and 
K ( x , t ) . - Z <\ <x)k ct> • 
Then for arbitrary functions i% (t)r..} &^ (t) 

in (2), the inequality 

(U) IK-K^I i IK-K^I = £Cm,L^) 

holds* 

Definition 1: The kernel (10) will be called the optimal de

generate kernel formed by the functions a-, (x ) ; • • • > -2.^ (*) 

RejftarJt: To obtain the optimal degenerate kernel we can also 

use the method of moments for equation (l). This means the 

following: An approximate solution of (l) is assumed in the 

form 

- 3 3 0 -

(9) 

(10) 



y(x) x* f(x) -̂ Z 0^ <Lk ťx) , 

and the coefficients <x̂  are determined from the condi

tions 
(yr - A Ky - i, a, ) * 0, k * 1, .*• , "i ; 

(see [l]). 

The convergence of the optimal degenerate kernels to 

the kernel K Cx , i ) i s stated In the following theorem: 

Theorem 3 : Let { a,^ (X ))**^ be a complete ortho-

normal sequence in L^ (0, 1) . 

Then 

(12) JU»* 6 ( m , L ) - 0 . 
/A-++O0 7 "* 

The following converse theorem holds* 

Theorem 4: Let the solutions of (4) converge to the solution 

of (1) for all f(x ) from a set dense in Lz (0,1) . 

Let there exist a constant A independent of *i so that, 

for the resolvent £, of the kernel (2)y the inequality 

(13) II (1 » & A 
holds for a l l trt . Then the sequence { a ^ (x)} m . i s 

complete in /WL , 

Remark: Theorem 4 can be strengthened at the cost of further 

assumptions on the kernel KC'X, i ) , but this i s not im

portant for our purpose. 

We are able now to determine the minimum of £ (79tfLtrL) 

by varying the subsets L ^ of dimension m> -

P9flnitton ?: 

(14) <«d scmf L^) * cl^(m) . 
See L2] . 



Set 

(15) K
L
C * , t) */кCf,x)KCf,i)df 

Q 

(16) K*CX,t)-fKCx,f)KCt,f)df> 

The kernels K
L Cx, i ), K C.v, i ) have the same 

sequences of eigenvalues 

o < A* « A! i ... • 
We shall denote by %>^(x) and 9 ^ fx) the cor

responding orthonormal eigen-functions of the kernels 

K Cx, i )
 ;
 K Cx

;
 i ) respectively* 

Definition 3: The kernel 

v
 £ $£*<*) 9* <t> 

(17) K^X,*)%Z ^ .̂ f 

will be called the TV -th extremal degenerate kernel to 
A 

the kernel K Cx , t ) * The subset L ^ formed by the 

functions <$k <x ) ; /c « 'f, ..., /n, ; will be called the 

extremal subset of dimension /n-, of the kernel K <x, i ) . 

The following theorem gives the reason for the prece

ding definition: 

WWflPM ?; For all /to,, 
(18) cL^<7rL) = I K - K ^ I I - 7 ^ 7 -

The method of minimizing U K - K ^ (/ makes it 

possible to establish estimates from below of the error* 

This estimate Is stated in the following theorem: 

Theorem 6: Let Cf<x) be the solution of (l), and tjf^fx) 

the solution of the equation 



(19) f^Cx) - X/K^CX,*) Y^Ct)dt m i U ) ' 
0 

Then 

(20) *w Jyto)-^L/*)I *IA\d^cm) -
//cf « * 1 

The right-hand side in (20) depends only on the kernel 

K f X , t ) , and so (20) gives the estimate from below 

of the error made by replacing the solution of (l) by that 

of (19). 

Definition 4; Denote by % (A) the set of kernels K(x, t ) 

satisfying 

(21) IK^t)^^,,^, * A 

and put 

(22) «C<A> -K^)€XcA)dn(mK) • 

Theorem 7: 

(23) d,„ CA) ~ -~ ' 

(Here o ^ ̂  ^^ denotes strong equivalence, i.e. 

Assuming the kernel K ^ x , t ) to be sufficiently 

smooth, it is possible using the method described in f3j, to 

describe the asymptotic behaviour of oL (VYl ) • Thus we 

get the following theorems: 
9s K 3*K 

Theorem 8: Let either -* ,^~ or - 5 — 3 - be con

tinuous and bounded in (07 1 ) for /$ * 0, •••; w * Then, 

for any positive 6 , there holds 
(24) d„Cm) - 0£*t- C ^ * £ ) + 63 . 
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For symmetric kernels we obtain this better result: 

Theorem 9: Let K(x, t ) be symmetric and satisfy the 

assumptions of theorem 8 . Then, for any positive £ , 

there holds 

(25) d cm) = 0 [ ^ " ^ I , + £ J 

If the kernel is analytic we obtain the following theo

rem: 

Theorem 10: For any £ € (0 , 1) let there exist two 

functions c (£) , i C p satisfying 

C(() > 0 , 0 < *(f) < 1 , 

and such that 

(26) K f * , t > « z * ^ o * , Z > f t - z ^ , 

where _ 

J°^r*,f>i < c cf)*"cp 
(27) 

for all X € CO,'?) . Then there exists a positive con

stant ft such that 

(28) d^cntlm OCe-^-J . 

The whole theory can be applied to the approximate solu

tion of boundary problems for differential equations. 

we denote by G"C.x, i ) Green's function of the pro

blem 

(29) Ef*f*>y'f*>J'- <l(x)cf(x) ~ t(x) , 
if(0)*Cf(i)-0 , 

m 



where (^(x)^ 0, f t (M) & i% > Of and %(*), p>1'(*) 

are continuous in the interva l < 01 1 ) • 

The aet of Green's functiona G(x 7 *fr ) of the 

problem (29) with ^(x), %(*) sa t i s fy ing the conditiona 

w i l l be denoted by £- /̂H> * fy > £-* * * 

Uaing the estimated of the eigenvalues of the Sturm-

Llouvi l l e operator, we obtain 

Theorem 11; 

(30) r ¥?L *. Qsd^C73%)><h-

for any 0 < 1** * P* f ° * %t # 

(Here d^ X A^ denotes weak equivalence, i#e» -2^ -* 

~0(Jtz>), Jb^m 0(a,„) .) 
The prooft of a l l these theorems and further r e s u l t s 

applying t o boundary problems for d i f f e r e n t i a l equations w i l l 

be published in the Czechoslovak Mathematical (Journal* 
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