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Commentationes Mathematicae Univers i ta t i s Carolinae 

6,3 (1965) 

THE FIRST MEASURABLE CABDINAL AND THE GENERALIZED CONTINUUM 

HYPOTHESIS 

Petr VOPSNKA, Praha 

Let ^ be the f i r s t cardinal number such that on a 

set of t h i s card ina l i ty there i s a non- tr iv ia l u l t r a f i l t e r 

i closed with respect to countable intersect ions* 

In the present paper, there are found upper est imates 

of the cardinal i ty 2 ^ on the basis of estimates of 2 * 

for a l l H^ < *# . 

The paper i s written in the Godel-Bernays set theory. 

The proofs are carried out by the method of models. Never

t h e l e s s , i t i s poss ib le to obtain a l l the resu l t s by c l a s s i 

cal means within the c l a s s i c a l set theory* 

Def ini t ion 1 . Let V* be the c la s s of a l l functions 

with domain c j . The l e t t e r s f , g , . . . denote variables 

for elements of the c l a s s V ** • Put 

i £ 9 . 3 {acs f (<*)** fyCrtley, -f I 9. a {<*$ i Cac) e fyCoc)\ € J 

By a set formula i s meant, the p .p . f from [1*1 such 

that there are no symbols for the spec ia l c la s se s contained* 

If Cf i s a set formula, then c/>* i s the formula obtained 

from Cf by rep lacing the symbol 6 by the symbol € 

and by r e s t r i c t i n g the variables to the c la s s V • 

Metatheorem 1. Let Cf (X^ , . . . ; iX^) be a s e t formula 

which does not contain free variables other than X 1 ? . . . . X ^ . 

Then the fol lowing statement i s provable in set theory: 
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/Cf f r . . , f^ ) « -foe; y f ^ t o ) , . . . £/<*>? e-> 
for every f r . . «^ g V * . 

For proof see T3J. 

I t i s known that there i s a model T of set theory such 

that i t s universal c las s i s V* and such that the membership 

r e l a t i o n for s e t s of P i s the r e l a t i o n e from def in i t ion 

1 ( s e e £ 3 j ) . 

I t i s a lso known that there i s a function G , defined 

on the c lass On , such that G(ec) i s an ordinal number of 

P for every oc 6 On , that G(/3 ) 6 G( ac ) for (I e oc , 

and that for every ordinal f of the model P there i s an 

o c e On with f £ G( oC ) (see £ 2 j , T3J). 

If x e V , we denote by kw the element of V*~ d e f i -

ned by 
(oc ) C 0C £ OJĵ  —> ^ CdC) = X J . 

Since ^ is the first measurable cardinal, G(oC) « 

£ k^ holds for every <x e OP- . Put d « G(fij^) • 

Obviously d e k̂ , A • It is easy to show that the ultra-

,filter j can be chosen in such a manner that d(<?c) -» cC 

for every oC6 C J ^ • In what follows, the ultrafilter 

j is assumed to possess this property. 

Since P is a standard model (see [3]), the function 

0 ( 0 ^ is a cardinal of P for every cardinal CJ . If 

cu^ is a strongly inaccessible cardinal, then ^(cu^) 

is a strongly inaccessible cardinal in the model P • 

Let M be the class of all strongly inaccessible 

cardinals. The symbol ( cc } * <jp ( <?C ) is an abbreviation 
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f or { <*,,' op (oo) Sc oce cu^ ] e $ > 

Lemma 1 . ( cC ) * ( oC € 2.0 . 

3Voof. As d x Gi&Jtf ) and -i)^ i s strongly inacces

s i b l e , d i s strongly inaccess ible in P . B y the meta-

de f in i t i on l f {ok} d Cos) e M J e j -

Def in i t ion 2 . Put aL0 (oo) =- 2 °° for every ac £ 6 ^ 

U t d = G( a* ) . 

Lemna 2 . card t% * 2 * . 

Proof. By the metatheorem, d0 is the cardinality of 

the power set of d in the model F • Hence card t^ ^ 

^ Z • Hence, it suffices to prove that there exists 

a 1 - 1 mapping of (r (CJ$ ) into the power set of d 

in P For m & oo^, put r/m> (<*,) * d( oo) n m 

(for every o\, 6 GJ & ). Evidently r ^ s d • If 

a 4» m , then r_ -f» r , . 

Theorem 1. Let y e C->^ . Then 

Proof. Put oLjwC<x) •» ̂ ^ 4 . f • Obviously, the ele

ments d̂ y* for c/̂ -6 *y form the set of all cardinals 

between d and d0 • Hence, there are at most as many 

cardinals between fiJ^ and l^0 . 

Theorem 2. f * ) * C 2"* 6 e j ^ J -> f * * ^ ^ ̂  • 

Proof. Similarly as in the previous proof, all the 

cardinals between d and d0 (in P ) are the d^*'s 

for d -£ CJ# > 

Analogous theorems may be obtained for other estimates 

of the cardinalities 2 * . 
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