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DET ERMINATION OF EIGENVALUES AND EIGENFUNCTIONS OF BOUNDED
SELF-ADJOINT OPERATORS
Josef KOLOM{, Praha
(Preliminary commnication)

l. The problem of determining the eigenvalues and eigen-
functions of self-adjoint bounded operators has been deve-
loped by many suthors. L.V. Kantorovid [1] used the method
of steepest descent to determine the largest eigenvalue,
and the corresponding eigenfunction, of completely conti-
nuous self-adjoint positive definite operators in Hilbert
space. Later M.A. Krasnoselskij [2] suggested ten methods
for calculation of eigenvalues in n-dimensional spaces,
but without proofs. These and Kostarduk s [3] methods are
simpler in comparison with [1]. The fifth method from [2]
was investigated by B.P. Pugatev [ 4] under the assumption
that the linear bounded operator is self-adjoint and posi-
tive definite. Wang Jin-ru [5] improved the fourth method
from [2] and performed a comparison of some these gradient
methods. Another method was proposed by W. Karush [ €] .

In this note we shall deal with two methods which were
described in [7),(8] . We assume throughout that H is a
real Hilbert space. The basic idea of these methods is the
following. Let us consider the equation
(1) Ax = Ax=0,
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where A is linear bounded operator in H , A is a real
parameter. Suppose that A 1is a positive self-adjoint ope=-
rator in H ( A is said to be positive if (Ax,x) > ©
for every xe H, x4 0 ). We solve (1) by an iterative

process

1
(2) Epe1 ] 1 Ax,
where the parameters A, (n=1,2,... ) are to be de-
termined from the condition that the functional I Ax - T xI*
for the given element x =x, € H is to assume its mini-
mum on the set 22 ( * € & ) of all real numbers. Let

us denote that value 7T (dependent on n ) by JI“H + Then

we obtain that

(ax,, , x, )
@) Anet * T2 18
"
and
I x, 0%
(4) P Gr . %) Ax, , X,# 0, x € B(n= 0,1,2,000)
mn

The second method was proposed by I.A. Birger [9] but with-
out any assumptions or convergence proofs. His method is as
follows: Let

(a3, , ¥, )
(5) Inea ™ (%44 iy, » (1™ T;:ﬁ.—’

Theorem 1 ([7],[8]). Let A be a non-negative
[ (ax,x) @ 0 for every x € HJ completely continuous self-
adjoint operator in H , let N be the null set of A and
let x,€ EO6©N, y, 6 HON be not orthogonal to the

y,s*o, Y, € H.

sigenspace ng corresponding to the first eigenvalue A.:
1
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of A , Then {,ﬂnf is monotone increasing and converges to

A’: . The sequence {(“’m,; is monotone decreasing and conver-

ges to (.ﬂ.’: y! . Botn sequences { x,?, {y,# converge in
HO N to one of the eigenfunctions corresponding to Jl': .

These methods were generalized by I. Marek [10] for li-
near bounded operators in Banach space, which have a dominant
eigenvalue. Simultaneously with [1], the method (5) was inves-
tigated by H.F. Bickner [11]. The purpose of .this note is to
show that the sequences { A}, {®, ! also converge in the
case when the greatest point of the spectrum 6 (A) of &
is not an eigenvalue of A , to remove the condition that .A.",‘,
be an isolated point of 6 (A) and to give some estimates.
The proofs are omitted and will be published later, together
with further theorems.

2. Suppose that A 1is linear self-adjoint positive opera~
tor in H. Let A, be the greatest element snd m the
smallest element of the spectrum &6 (A) . The spectrum

6 (A) 1lies in the segment ¢ m, 3:1) , where m =

A ~
T W N g

self-adjoint positive definite operators (m > 0) is enclu=-

(Ax,x) , m& O . (The class of

ded in thée class considered here.) Let {EJL} be the spectral
family of A

Theorem 2. Let A be a self-adjoint positive operator
in H . Suppose E, X, x, for A < I,, ,

A
(or that RJ\. Yoo ¥, for A < .7\.1 ’ )e Then{.ﬂ.n;
is monotone increasing and converges to 3:1 (and { (w“] ie

~ oA
monotone decreasing and converges to 11 R
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Theorem 3. Under the assumptions of Theorem 2 let Z,,
not be an eigenvalue of A . Then both {x, ¢, {yn] conver-
8e to 0 weakly in H .

Theorem 4. Let A be a positive self-adjoint operator in
H and suppose that i, (not necessarily and isolated
point of & (A) ) is an eigenvalue of A , E;L is the
elgenspace corresponding to .7&., and that the projection

(o)

of x, (x, € H on Hy is e

, , Where e, € He

1 A’
le # =1, 1(°’> 0 . Then

lim | -Ne =0 where N = su lx, |l < + oo .
>0 x&‘ 1 ! k-1,p2,--- *

(x,y) 'y
Now set cos(x,y) = ———— | gin(x,y) = V1 = cos (x,¥).

il iyl
Then the following theorem holds.
Theorem 5. Let A be a positive self-adjoint operator in
H, E, x,% x, for A < 51 , and suppose x’
is an isolated point of ¢ (A) . Then there exists a real q ,
0 <q<1 such that for n, sufficiently large,
5, o nens Tmep) oo G xm) )

& q (A'q -
[ Ix, 1* "

W op = €0 %og d 18 VE Q™ Llx, 0 ll Uk, 1 - G5, e

(K -, %
sin(r"_“_ﬂ,e")é(wz A, = "‘b*") ’

where m & A & M 451 s (p=1,2,...)

Theorem similar to theorems 4,5 also hold for second met-
hod (5). The methode (4),(5) seem to be very simple and con~
venient for computation. They can also be used for finding

the extreme values m, 3.,, of the spectrum 6 (4) .
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