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A WOPE ON DETERMINATION OF EIGENVALUES AND EIGENPUNCTIONS
OF BOUNDED SELF-ADJOINT OPRRATORS
Joser KOLOME, Praha

In {1] we gave some regults eoncerning the determination
of eigenvalues and eigenfunctions of bounded self-adjoint
operators in a& real Hilbert space X . In Section 1 we recall
some asaertions from '[ 1]. The purpose of Section 2 of this
note is to establish sqme‘eatimates for the methods presented
in [1].

1. Suppose that A : X X 1s a linear self-adjoint
positive ( (AX,x) > 0 for every x = 0, X € X ) map~-
ping of a real Hilbert space X into X . Let A, be the
greatest element and /M the amallest element of the spect-
ram 6(A) of A . Denote by { E‘x} the spectral family
of A. IrEAx_-o-.x., X, € X for .7L<i1 y
then A~ ﬁ; , Where

-2 -1
(1) A, = (A, XA, U, X, =, AX, -

Suppose that .M (not necessarily an isolated point of 6(A) )
18 an eigenvalue of A, Xi is the eigenspace corresponding
~ 1
to A, , and that the projection of X, € X on Xz 1s
(o) . @
§, °¢ , where ¢ € Xa1, lel=1, £ > 0 . Then
Xp —> N-e, in the norm topology of X , where N =

.MT,H.X <+ 00 .
net2,.,. i
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Now, if 11 is an isolated point of &(A) (m £
5‘15M<.x,)7and E.’va* Ko for.a,<21,then
there exists a real ¢ (0 < g < 1) such that for m,
sufficiently l.arge, (71- -1, 2,...)

~ -2
(2 X~ (A g Wb U7 (R~ (A gy 31X 1)

nxﬁ.fﬁ - € 'x.,‘fﬁfp‘ | % Vz—%ﬁ['txﬂy.ﬁ, '(”-K,,’ I-
3
) - (X, €, NI
Similar results hold for the sequence {%}l where
(4) Ymta = (Pnst A%I (uwﬂ' (A%)’yf»)”/‘% ”-2 .

2. The inequelities (2),(3) state asymptotic estimates
for (1). Using some facts from [2] we shall give estimates
for finite number of steps of (1) or (4),

Suppose again that A : X — X  is & linear self-
adjoint positive mapping of a real Hilbert space X into
X ., Let .x, be the greatest and #  the smallest ele-
ment of the spectrum o (A) . Suppose that x, is an iso-
lated point of 6(A) (m & A & M < 5, ). Then .'i,
is an eigenvalue of A . Denote by Xﬁ', the eigenspace
sorresponding to K.,, and € (€ /| = 1) the projection
o X, € X, , X # 0, where X, 1is the orthogo-
nal complement of )(3"1 . Then X = XI, ® Xz , and
for every X, (m =0,1,2,...) defined by (1) we have a
urique decompositiom )

(5)X,= §a€ + A, , where A4, e X’_ and (e, 4, )= 0.

Now set cop (X, ) = (X, ) IX U lap N7] soim (x,4)=
= (1= cod® (X, Y



for every X, q € X. Then Ain(x,,e)= by I 1x, -
forevery m (m =0,1,2,...).
Set X = X N, 177 M1m by, 11X, 1 X X0 I X I
Then X = (Ax,x)"(.%,§e +An ), where §=En l-x,,,ld.
Therefore X = o §e + g , where = §,,, Ix, e ﬁ:f
C(AX, X ) g=y, NX, 1= (Ax XY AR, Since X = f€+4 and
e 1-1 0 I? , 1t follows that (Ax,x J's (3[1— @)’ where
a=~(LE-A)h, h ), E  denotes the identity mapping
of X .Tus e d, (X, -a), g=(X,-a) AR .

Now we have D = g I Ix1™* 14172 =

2,1 LNl - lgl?
= lg "% I =1~ y YL

where & = &' §24+ 1 g% . since = 1- ILAl®,

one has that

-1

J

6) Dmd-p(at-B) 2 Ii? vhere f=a?llhl -
Mgl e (F-alt (AELAP- AR 2 5, (G-t
A MW= (A, ) = X, (F-a Y (K E - A )=
= 5.1a(§1— aYy? .

Therefore

tn Al-pr'2 i,a(.if-i,a,)"> ax’ -

Since 1 € Xz and the gpectrum 6 (A) of A in X,y
lies on the line-segment {( m , M > ,

~ -~ 1
® a=(XE-A)h,h)2(Q-M)LAIL" .

Acoording to (6),(7) and (8),
] -
D< 1-(§“|X,,| @ (1=~ MI,‘ ) . Thus we obtain the follo~
wing

- 523 -



Theorsg—ts Let A: X <p-X be a positive gelf-ad-
Joint mapping in X . Suppose that i, 18 an isolated
point of &(A) and X,Exz, X, %+ 0.

Then ‘
(9) Aim(Xypy)€) < gm #m(X,,€) | where

(10) qu =[1- (G b3, 1" A-MEE, (ma0,4,8,.0) -

Remark l. The inequality (9) can be written in the form

1) M, HIx, 07'< g b N Ix 17, (m=01,2,..).

The estimate (9) is not exact. A better estimate is gi-

ven in the following
Theorem 2. Let the conditions of Theorem 1 be satisfied;

then
’ -1
(12) My B IX, N < Qg Yoz Lnmgree

where Qn-1 < g”.z<... < ?p < 1 , md 2*' (le-D,”,z;'")
is defined by (10).
Proof. Since X, € X, , X, # 0 , one has that

Q. I, I, I'm=1,2,...),

-1 -1
1§, 1 X, 17" > 0 ; hence g, < 1. Because ll}gllllqu! <
- -2 2 ~2
< N 0 lix, 17" ana £ N N+l 17 U, 17 ,
- 1 - 2 -
-f ll.x1ll‘+llh,l Ix | 2 ,  we conclude that § x>
> £ B, 0% 5 hence 2, < @ < 1. Sinilarly ¢,.,<
< Qneg <. <G < 41 . This concludes the procf.
' Bepark 2. Denote by ay, =€+, (mi 0,1,2,-:)
the unique decompogition of 4 (defined by (4)), where
¢ € X, . Under the assumptions of Thearem 1 we have that

-1
a3 b Ny "< %y 2y goee 2, K N B 177,
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where X _ < 4, _, <..<n <1, eadn (k=012,..)
is defined by

(14) 4*-£1—(9;,"4+,,,H“)"(4~M§;’)J’1 .

A similar result also holds for Kellogg'n method.

Theorap3. Let the conditions of Theorem 1 be satisfied;
then

~ g 2 -2
as) X -2, < ‘Zﬁm ey Qf (X, -m) bl X, 1%,
where Qu., < Q-2 <o < g < 1, and @y (h=0,1,2,...)
is defined by (10). Moreover, if m-’a‘rluf (Ax,x)> 0, then

a6) w,-Xl<nl AL, MM EN) g, | 12 g 17

n‘l m-2"

Progf. Aceording to (1) and (5),
¢ 2 -2
Rm = L3 M, = CAx,, %, 00 11, |

~ -2
=X, N0 1= (A, A0) 1%, P (5, E- AR, A )06, 1

Since 41, € X, and the spectrum 6 (A) of ‘A in X,
lies on the line-segment < i; -M, i,' ~m >, one has that
x' -a < (11— m)lh, " I x, [ Using Theorem 2 we
obtain (15). Furthermore,

- [(Ag,,g.)- X, A 2 Ay, I &

- -2
§ (E-X"A)Ag,, g dm 1y, !
o« (Mmt-Z) g, 1P Hy, 170
Using (13) we get (16). This concludea the procf.
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