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Commentatione8 Mathematicae Universitatis Carolinae 

8,2 (1967) 

LYAPUNOV'S DIRECT METHOD IN ABSTRACT LOCAL SEMI-FLOWS 

Josef NAGY, Praha 

In il] a very interesting idea of stability and bounded-

analysis in differential equations theory is described* 

In this paper this idea will be used in a little more ab­

stract form to study several properties of abstract local se­

mi-flows in an abstract set. 

(The notion of an abstract local semi-flow was introduced by 

0* Hdjek in his seminar at the Mathematical Institute of the 

Caroline University at 1965, see also t21*) 

First several notions and notations will be. introduced* 

-•• Notation Throughout the paper, P will denote an arbitra­

ry abstract set, R the one-dimensional Euclidean space, R* 

its subspaee < 0, + oo), In what follows, a .map 0: ?* R -* R+ 

will be given* This map, about which we suppose only to be de­

fined on the whole set P x R , will play a very important 

role* (From the context it will be clear that nontrivial re­

sults may be obtained only in the case of g such that the 

set { (x, & ) € P* R.*<^CX, $)• 0} is nonvoid. The following 

two cases are of special interest: there are given a metricJD 

on P x R, , a nonvoid set K c P x R fand a map g. such 

that tyf*, 6)-£»f ff foe, 0>,%5»;r^, $) e K J , orf if 

K #*{*£ P:(X,9)GK} is nonvoid for all 6 € R } gA is such 
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that 9, < X f 0 ) » ^ f p < O c , 0 > , <->,*»/ ty,»)€ < ? • Clearly, 

the functions g1 and g £ are, in some sense, distances bet­

ween a point and a given subset in P x R . The set K and 

the function g 2 are very similar to the set M and the 

distance d in the Yoshisawa's study of the M-stability and 

If-boundedness 133.) 

In this paper we shall occupy ourselves with partial maps 

t; ,Rx Px R 4 P , and we shall use the following natation: 

domain t will denote the aet i (6, x , <*,) e R x P x R ; t(99x,oc) 

i s defined 5. The value of the map t at a point (@, x, oc ) e 

e domain t will be denoted by ^ t^ x . To every pair 

/ 3 , c t € R, /i & cc 9 there ia assigned a partial map 

*tK: P-> P . > t e c C x ) « / 9 t 0 C X . 

If cc, fl, T are reala, oc * fi> 6 %», *aen r ^ *fi ^ denotes 

the composition of the maps t and t^ , Finally, let D 

denote the 8et { Cx, -x ; € P x R : Coc, »x , oc) £ domain t } , and 

define a map 

€,: D-+ Ruf+ooJ; e Cx, oc )m Arup,i0e R: (Q,x,oc)edomain ti. 

The notation just introduced will be used in the formulation 

of the following definition. 

2. Defal t foil A partial map t ; f c x P x R - » P will be 

called an abfit£ajst_lfica.l_sfimi-£low on P iff i t has the fo l ­

lowing properties: 

( i ) «*, t^ x - x holds for each Cx, < j c ) e j ; 

( i i ) e Cx, oc ) > oc holds for each Cx, oc ) e J> j 

( i i i ) *>*/i • 0 *«& • y** h o l d s *n«ne*er <x * fi * Y 
and at least one aide of this equality i s defined. 



An abstract local semi-flow will be called global i f f 

e (X, o\, ) m + oo holds for each (x, ot ) c D * 

3* Remark From 2 ( i i i ) there follows directly the following 

simple proposition: i f (T, X , ot ) e domain t and r > <*-> 

then ( &, x, <TO ) € domain t for each 5 € <r-oo , T > -

Hence and from 2( i i ) we then obtain the following assertion: 

corresponding to each ( x , ot ) 6 J) , there exists: ft > oc such 

that C 8 , x , ot ) e domain t holds for each 0 € < *>, fi>. 

4« Definition A partial map A>: R —* P will be called a soiu-

&io.n of an abstract local semi-flow t iff the following con­

ditions are satisfied: 

( i) domain s i s a nondegenerate interval in H ; 

( i i ) A> ((i ) » t^ M (ot ) holds for each pair ot, fie domain A>, 
et &• fi> . 

->• Conditions Let there be given an abstract global semi-flow 

t° on R+ f maps V: P x R -• R+, (to: R -+ <e, + oo ) , 

0< & e R, t : <t, + <x>)^ R,0<?€R,*t:R+~*R+,tr:R+-+Ri"f9xxch that 

$!!n'+%cf* ^^9)» + <x>f$p>0*nt v(9)-0f ^zratrictly increasing. 

Finally, t will denote an abstract local semi-flow on P • 

We shall formulate the following two conditions* 

( i ) {U>(9)>V(e%0x} 9) 6 $t^ft for each ft e R* and 

( x , ot) e "D such that (u, (ot) , V(xf ot) 6 ft f and each 
9 e < at, efX,et))> u(q,(x, 9)) £ V(x, 0)£ r(9)> v(g> (X, &)) 

holds for each ( x , 0) e J> *• 

( i i ) V(0teCX99)^$ i£ ft holds for each ft e R*" 

and Cx, ot ) e D such that V(x, K ) * ft , and each 

9e<ot1 B(x,<c))$ uCq,(x,e))*V(x,9)*<v(q,(x,9)) 
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holds for each (x, &)e 3> # 

$• ggopertie* We shall say that the abstract local semi-flow 

t ass oae of properties 6( i ) - 6(£v) i f f the correspondingly 

numbered condition of following i s satisfied: 

( i ) there i s a positive function co(<x,§ ) (ot& R, f > O) 

such that 9^**cX? $) < f holds whenever (x,oc)e P, 

fy(#f<*)£ o> (at, f >, 9e<cx, e(*,ot)); 

(11) the function co (ct7 J > in ( i ) does not depend on 
at; 

( i i i ) there i s a positive function {h <<x, co ) (<x € R, co > 0) 

such that 9* (B tK x , 6 )<. (I fatf Co ) holds whenever (x, <x ) € P, 

q,(Xf<x)4co and 9 € <<Kf S>(«, <x )>; 

(iv) the function fi>(ot, co) in (111) does not depend on 

ot * 

Similarly, we shall say that an abstract global semi-flow 

t has one of properties 6(v) - 6(viii) i ff the correspondingly 

numbered condition of following i s satisfied: 

(v) there i s a positive ft.tttetioad(ot^,ft>>6C€ R,*l>0, co>0) 

such that 9* f* tjt x , 6 ) < ^ holds whenever 

(x7et)m P, <j,(x,<X)£cOf 0 *ot + &(<X,,ri,aj); 

(vl) the function 9(ot, ^ . , co) in (v) does not depend 

oa at) 

(vii) there are positive functions Q (<x9 co ) and 

<f(ot) (ot m R, co > 0 ) such that q, C0t^x,6)<cr(<x) 

hold* whenever Cx,«c) e P, q,(x,0t)£ co, 0 .* <x 4- 0 (u,co) ; 

Cvlil) the fuaetioa* &(<%f co) and cT(<x) ia (vi i) 

do act depead on ot • 

In the same way, for the abstract global semi-flow t* oa 
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E* and for a special choice of a map %.tR+M R~* 1&:Q,fof0)mfc9 

we ahall aay that t° has property 6( i )° i f f 

( i ) ° there ia a positive function co C<x>, f ) such that 

9t^ H, < f for each H, 6 co Coc, f > and e «* oc } 

and, analogously, for properties 6 ( i i ) ° - 6 (v i i i ) ° . 

7» Note It. i s easily to see that propertied ( i ) , ( i i i ) ,(v) and 

(vl i) correspond to those of stabil ity, equi-M-boundedness, 

quasi-equi-asymptotic stabil ity and equi-ultimate-lfr-bounded-

ness, as they are defined e.g. in 131 $ and the remaining pro­

perties are their corresponding & -uniform modifications. 

&• Theorem Let t be an abstract local semi-flow on P , t° 

an abstract global semi-flow on R* • 

( i) Let condition 5(i) be satiafied. If t p has proper­

ty 6 ( i ) ° , then t has property 6(±K 

( i i ) Let condition 5( i i ) be satisfied. If %° has pro­

perty 6( i ) ° or 6 ( i i ) ° , then t has the corresponding proper­

ty 6(i) or 6 ( i i ) . 

( i i i ) Let condition 5(i) be satisfied. If t* has pro­

perty 6 ( i i i ) ° , then t has property 6 ( i i i ) . 

(iv) Let condition 5( i i ) be satisfied. If t° haa pro­

perty 6 ( i i i ) 0 or 6(iv)° , then t has the corresponding pro­

perty 6 ( i l i ) or 6( iv) . 

Proof. Ad ( l ) : According to the assumption, there i s a 

positive function a**C t̂, f # > such %ha%0fccv*C<x,t §
0X'§* 

for each a * at s) and for each Cx9cc)e 2> such that 

<U(PC)> ?Cot)'VC$CH&))*&&,$") %her* holds (uGxh Vf«x»<*>-6 

±cop(oc7 §*>, Hence there follows 
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(u,(&).V(9%cx,e)*0tZG>ecoc9$
cy* $* > 

00 that 
(1) ff. AX,(c^(0t^x,9))&(u(0).M.(q,(0%cx9e)) * 

6(A(e).V(tteCX90)*0tZ*>°(cc, $*)* £* 

holds whenever 
(2) (X9ot)eV, <co (oi). rC°t)> *<&(*,*>»**>*Cec>f')9 

e € <oc, e (#>•> <*> y> • 

Now, given any f > 0 and oc € R , choose f * in (1) 

and (2) so that f ° * 6*. u,(§ ) and define o>c*c, § ) 8o that 

the relation co*(otf &.*(.($ )j ^^Coc). fCoc).v<coCcc,%))s>0 i s 

fu l f i l led . Then, from ( l ) and (2) we obtain that 

9(*%L*>&) * ? holds whenever Cx9oc) 6 J> > 

g.CfX,oC) -£ <x>Coc9 g ) ? $ e < < x , £ < \ x , < x , » , 

i . e . t has property 6 ( i ) . 

Ad ( i i ) : The f irst part of this assertion follows directly 

from the preceding assertion ( i ) . If t° has property 6 ( i i ) ° , 

then the function co°(oc^ %° ) in the proof of 6( i ) does not 

depend on 00 , so that i t i s also possible to define co Coc, $) 

independently of <X • 

Hence t has property 6 ( i i ) . 

Ad ( i i i ) : According to the assumption, there Is a posit i ­

ve function (h* (otn co* ),oc e R , *>c > 0 such that 

0t£cv*<:(l*(ecfcv0) holds for each 0 a oc . Let 

AJb(oc)*y»(oc). v(q>(Oi9oo)) -* co°. Then there holds 
(U,(<x,). VC*,oc) * (uCot). <y Coc)'**C&(x,oc)) * coc , 

hence the relation 

(3) tv.vKq,^*,*))*<«,(**)• V<#V*>#)Vrf ^** fl9c«,*f) 
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follows whenever 
(4) Cx,oc)6 J), (u,CoL).y>CoC). -u>Cq>Cx,<x )) * <SJ% 

6 € <oc, e,Coc,oc)) • 

Now, given any oc e R, <v > 0 , choose o>* in (3) and (4) so 

that &>* - (cc Coc ) • r Coo ) , irclcu ) > 0 and define /l(oc,aj) ao 

that (bc(oL,^(<*).r(cc).*rCcj))66'.u(fi(oc,cu)) ia satisf ied. 

Then from (3) and (4) we obtain that 

9^* 4c•*# •)*&(*,&>) holds whenever Cx.,oc)€ J> , 

g,Coc,oc) .6 tfu , P e < oc f e f%>c.,oc ) ) , 

i.e. t has property 6(ili). 

Ad (iv): The first part of the assertion follows directly 

from 8(ill). Since the function ft* Coc, o>°) in the proof of 

8(111) can be chosen independently on 00 , the second part of 

the assertion follows easily. * 

This completes the proof of theorem 8. 

9# theorem Let t be an abstract global semi-flow on P, t° 

an abstract global semi-flow on R"**. 

(I) Let condition 5(i) be satisfied. If t° has property 

6( v)°, then t has property 6(v). 

(II) Let condition 5(11) be satisfied. If t° has pro* 

perty 6(v)° or 6(vi)°, then t has the corresponding proper­

ty 6(v) or 6(vi). 

(ill) Let condition 5(1) be satisfied. If t* has proper­

ty 6(vii)°, then t has property 6(vii). 

(iv) Let condition 5(11) be satisfied. If t° has proper­

ty 6(vii)° or 6(viii)°t then t has the corresponding property 

6(vil) or 6(viii). 

(v) Let condition 5(1) be satisfied and let ^Ca)--> + 00 
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for 0~+ + co0 i f V has" property 6<i)° or 6 ( i i i ) ° f then 

t has property 6(v). 

£££$£• Ad ( i ) ; According to the assumption, there i s a 

function 0*Coc, %'f a>") such that et* <v"<c ^° for e a c h 

9 & ot 4- $°Cotf *i*', G>* ) f hence 
(5) &s^C^Cst^x,0))^(^C0)'\/Cet^^fB)^t^o0<fi0 

**olds whenever 
(6) (M(ot).rCaL).vC<frC*iOt))&Gf, Coc,oc^e J>, 

e*>cc + 6°Cocf Y> &*) * 

Let there be given oc m R f ^ > 07 cv * 0* Choose o> * and 

*£ in <5) and (6) so that if* ^ACCI )9Ct>*«{AC0t)*YCot).vCa>) 

and define dC<x.r%, &)* O'CoCtd'* ic CTI), (U.C*)» r&L) * <vCo)) . 

Then from (5) and (6) there follows 

* 9'<#4|tt>*><41Z whenever r : x , o c ) < 5 j > ^ ^ o r ) ^ a j ^ f ^ / 

i . e . t has property 6(v). 

Ad ( i i ) s The f irst part of the assertion follows direct­

ly from 9 ( i ) . To prove the second part, i t suffices to obser­

ve that from 6(vi)° i t follows that 0°Cotf ^°, co0) in the 

proof of 6(i) does not depend on ot, ; hence the existence of 

the function 8 with the required properties follows easily. 

Ad ( i l l ) : According to the assumption there are functions 

6* C<x9 co°) and cT'Cot) such that 0tM co° «c <T* Cot) 

for each * * at * Q9C<Kf o
0 ) . Hence i t follows that 

(7>f f*^f9- f*^x ,* ) )*<C6( :# )^ 
holds whenever 

(8) (*f<*)€$9&(k)*TC(X).vGfrCxfoi%*^ 

Let there be given oc e R , a>>0. Take a>* in (7) and (8) 

so that Q>mm(CtQjO» y-Cot).*mCci>) end define the functions 



9(<£, CO ) and cfCoc ) so that the relations 9 (ooy co ) m 

*QpCot7 (ttCoc )# yCoc), vCot)) and cT0C<x ) ** e'.A^C^Coc )) are sa­

t isf ied. Hence and from (7) and (8) i t follows that 

Q>(e%t * i * )-* cTCot ) holds whenever Cx, oC)e T> , 

fyCx,'X)*a), e *ot + 6 Coc, o) 7 

i . e . t has property 6 (v i i ) . 

Ad ( iv): The proof follows easily from that of 9 ( i i i ) . 

Ad (v): First suppose that t° has property 6(i)°* Let 

there be given oc e R, ^ > 0 and a) > 0, Let f * in (1) 

and (2) be such that O<co0C<x, §*>*ftCcc).<rCac). <wC*A) ) . 

Then e* 
A4,C+C,t0tx,*»* ^ ^ 9 

whenever C*v, oc) e J), q,CsX><x )*cu, 0* oc , According to the 
CO 

assumption ,. —*> 0 for e —> -f- oo , hence there exists 

9C(%6
7 n > sucli that 9. C*^ *, 9) <c 9i t or e * d'ff*, ^ ) * 

On defining 0Coc, ^ ; &)m 0*C§c,ni) ~ <K ( J* depends on oc 

and a; ) , we obtain that 

9^tc«** 0 ) -«-* ^ holds whenever Ccx 7<x)e T>,q*Cx,oc)*<z), 

e *cc + &Coc,^, co ) f 

i . e . t has property 6(v). 

Now let t° have property 6 ( i i i ) ° and let there be given 

ot e R , % > 01 and co > 0 . Choose a)0 in (3) and U) so 

that a)°s fjiCot). fCec) , vCco > . Then we have 

u,C9C0tytM,0'»* —£^0><> whenever (x,ot)€p, 

fy(M, Ot) * &, & * Ot . 

&*Ccc,o>0) 
According to the assumption, ~ — —y 0 for 0—> + °0, 

(CC C0/ 

and hence there exists B C<xfG>0, ^ ) such that 
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•" ^ / # ? — x *u ,&i ) tot B St e'(<x,*>% ? ) * Setting 

&(<x>,*l,<V)*6'(cc,a>%n)~<JC , we obtain that 

Q. (9 t #, 0 ) -# ^ holds whenever ftc, <X )* 2>,9.<ar/x1--»CJ, 
0 k <* + SCbC, ^ , <V ) , 

i . e . t has property 6(v); this completes the proof of theo­
rem 8. 
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