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LYAPUNOV'S DIRECT METHOD IN ABSTRACT LOCAL SEMI-FLOWS
Josef NAGY, Praha

In [1) & very interesting idea of stability and bounded-

ness analysis in differential equations theory is described.
In this paper this idea will be used in a little more ab- »
‘stract form to study several properties of a&ffact 16ca1 ce-
mi-flows in an oﬁotrect set.
(The notion of an abstract local semi-flow was introduced by
0. Héjek in his seminar at the Mathematical Institute of the
Caroline University at 1965, see also [2].)

First several notions and notations will be introduced.

1, Notatiom Throughout the paper, P will denote an arbitra-
ry abstract aet,v R the one-dimensional Fuclidean space, rt
its subspace {0,+ c0), In what follows, a map g:PxR — R*
will be given. This map, about which we suppose only to be de-
fined on the whole set P > R , will play a very important
role. (From the context it will be clear that nontrivial re-
sults may be obtained only in the case of g such that the
set. { (X, 6)€ Px Rig(x, 8)e 07 15 nonvoid. The following
iwo cases a;'o of special interest: there are given a metriop
on Px R , anonvoid set Kc Px R and a map g, such
that g, (x, 8)=inf{p (X, 0), (%S MN: (4, §) e K §, or, if

Kg={x €eP:(x,0)€K} is nonvoid for all 6 € R , g, is such
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that g, (X, 0)~ mf {p((x,0),(y,8): (4,0)e K7 . Clearly,
the functions g, and g, 8re, in some sense, distances bet-
ween a point and a given subset in P x R . The set K and
the funoction g, are very gsimilar to the set rl and the
distance d in the Yoshizawa's study of the M-stability and
M~boundedness [3).)

In this paper we shall occupy ourselves with partial maps
t:RxPx R = P, and we shall use the following notation:
domain t will denote the set {(8,x,0)e R xP=xR:1(0,x,a)
is defined{. The value of the map t at a point (@, X, x )€
€ domain t will be denoted by 4%, X . To every pair

3, € R, 8> o , there is assigned a partial map
Bla i P—r Pijt (XY=, t X.
If <, (3, % arereals, o«c « B3 6 3 then .t

ra°s t" denotes
the composition of the maps 'rtn and ,atx . Finally, let D

denote the set {(x,x )€ PxR: (o, x,a)e domain t§,and
define a map
¢:D>RuU{+00): (X, )= sunide R:(0,x,00)edomsin £3.

The notation just introduced will be used in the formulation
of the following definition.

2. Defipition A partial map t: R < Px R — P  will be
called an gbgtract_local semi~flow on P 4iff it has the fol=-
lowing properties:

(1) 4t X =X holds for each (x,x )€ D;

(11) € (X, & ) > x holds for each (x,x )€ D ;

(111) ptye 5t =, T, holds whenever x < 3 < ¥
and at least one side of this equality is defined.



An abstract local semi-flow will be called glgb;gl irt
e (X, )=+ 00 holds for each (x,x )e D .
3. Remark From 2(1ii) there follows directly the following
simple proposition: if (7; X,ou)e domaint ana 3 » £,
then (6, x, ot ) € clomain ¢ for each 8 e <@, ¥ >.
Hence and from 2(ii) we then obtain the following assertion:
corresponding to each (X, oc ) € D , there exists B3 > « such
that (0, x, &« ) € domein t holds for each e <o, 3>.

4. Definition A partial map A: R — P will be called & golu=
tign of an abstract local ;emi-flow t iff the following con-
ditions are satisfied:

(1) domain s 1is a nondegenerate interval inR ;

(11) »(B)=,t A (x) holds for each pair o, 3€ domsin 5,
A £ /3.
5. Conditions Let there be given an abstract global semi-flow
t° on B* , maps V:PxR—R* w:R—(6,+m),
0< 66 R, 7:<?,+00)+ R, 0<?€R, «:R* R*, v:R*3 R* such that
5“-;:”-*2’“” ()= + m,é«_‘:;noﬁnf v¥(6) =0 w,rstrictly increasing,
will denote an abstract local semi-flow on P ,

Finally, ¢
We shall formulate the following two conditions.
(1) @(8). Vgt x,0) < gt3 £ for each # € R* ana

(X, )€ D such that (u(x).V(x,oc)‘/; , and each
fe<x, £(X,))y ulg(x,0)4V(X,8)Sy(0).v(g(x,8))

holds for each (X, 8)e D .
(11) Vgt %, 06,3 1 holds for each 2 € R*

and (X, )€ D seuch that V(X, o) % 4 , and each
fe<a, (X, N5 Mg(X,0N€V(X 0)£v(g(x6))
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et

Aﬁoldé_ for each (x,8)e D.

6. Properties We shall sey that the abstract local semi-flow
t has one of properties 6(1) = 6{iv) iff the cmeapondinslyv
numbered condition of following is satisfied:

(1) there is a positive function co(ex,§f)(a€ R, §>0)
such that @ (p¥x X, 6) < § holds whenever (x,x)€ D,
Gga)S w(x,§), fe<ax, ECx,x));

(14) the function cw(x, § ) in (i) does not -dopend on

xj;

(111) there is a ponitﬁe function B (o, ) (o € R, & > 0)
such that g (pt, X, 8)< (B(ex, @ ) holds whenever (x,«)€ D,
G(X,x)€cw and fe <, E(Xu »;

" (4v) the function @B(x, @) in (111) does not depend on
x .

Similarly, we shall say that an abstract global semi-flow
t has one of properties 6(v) = 6(yiii) iff the correspondingly
numbered condition of following is satisfied: ‘

(v) there is a positive function 8(x,7,a)eR,” >0, >0)
such that g (p te X,8)< 7  holds whenever

(%,x)eD, g(X,x)E @), 62 +8(x,n,a);

(vi) the function & (ex, 7, w) in (v) does not depemd
on o '

(vii) there are positive functions 6 (o, ) and
I(x) (x € Ry @ > 0) such that ¢ (¢, X,8) < ()
holds whenever (X,x)€ D, g (X,x)€w, & 2o + 6 (x,D);
© (vi11) the functions 6 (&, @) am o*(x) 4n (vii)
4o not depend on £

In the same way, for the abstract global semi=-flow t° on
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BE* and for a special choice of a map g:R*~ R—>R*:g(x,0)=2,
we shall say that %° has property 6(i)° iff

(1)° there is a positive function o Cax, §) such that
ebte#<§ foreach £ £cw (x,§) and 6 & oc;

and, analogously, for properties 6(i1)° - 6(vi11)°.

7. Note It is easily to see that properties (1),(1ii),(v) ana
(vii) correspond to those of stability, equi-M-boundedness,
quasi-equi-asymptotic stability and egqui-ultimate=M=-bounded=
ness, as they are defined e.g. in [3], and the remaining pro-
perties are their corresponding & =-uniform modifications.

8. Thegrem Let ¢t be an abstract local semi~flow on P , t°
an abstract global semi-flow on R .

(1) Let condition 5(1) be satisfied. If t° has proper-
ty 6(1)°, then t has property 6(i),

(11) Let condition 5(11) be satisfied. If t° has pro-
perty 6(1)° or 6(11)%, then t has the corresponding proper—
ty 6(i) or 6(ii1).

(111) Let condition 5(1) be satisfied. If t° has pro-
perty 6(i11)°, then t has property 6(1ii).

" (4v) Let condition 5(11) be satisfied. If t° has pro-
perty 6(111)° or 6(iv)® , then t has the corresponding pro-
perty 6(11i) or 6 {iv).

Proof. Ad (1): According to the assumption, there is‘a
positive function w’(ax, §°) such that,? (e, §°)<§°
for each ¢ > ot; and for each (X,ax)e D such that
o @) 'yta)-vcg(&,a))‘dbc, §°) there holds w (x). V(x,x)s
£ @’ (x, §°). Hence there follows
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@ (0). Vit X,0)% t°ax,§°) < §° ,

so that
(1) 6., 4 (gCelecx,0)) %t (8). it (GGt x,8)) %
S (0). Vgt X,0)%,t5 w°(x, §°) < §°
holds whenever . ,
(D) (X,x)e D, @ (@), y(a). v(g(x,a)Nea,§%),

ee<a, £€(X,x)) .

Now, given any § > 0 and o« € R, choose §£° in (1)
and (2) so that §°= 6. w4 (§) and define c(x,§) so that
the relation @’(ax, 0. U(§N de(x). ¥la) ., §V>0 is
fulfilled. Then, from (1) and (2) we obtain that

@let%,0) £ § holds whenever (x,x)€ D,
g(X, %) £ @w(x,§), 6 €<x, E(x,x)),
i.e. t has property 6(1i),

Ad (11): The first part of this assertion follows directly
from the preceding assertion (i), If t° has property 6(11)°,
tlen the function cw?®(x, §°) in the proof of 6(i) does not
depend on & , so that it is also possible to define cw (X, §)
independently of o«

Hence t has property 6(1i).

Ad (411): According to the assumption, there ds a positi-
ve function B° (a, w°),x e R, ¥° > (0 such that
otia’<3°(x,@°) holds for esch 6 2 o . Let
() g Cx)e ¥ (@ (X, ) & @®. Then there holds

@) Vix,a&) € g (x), 7 ()v@x,x)) €o’,

hence the relation
(3) 6. an(g Gt X, 006 e CO)- Vi t, x,0)5, 1 a’< 3%, )
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follows whenever
() (x,2)€D, la). prlx). v(g(x,x)N €,
66 <x, £(Xx)) .

Now, given any o € R, @ >0, choose co’ in (3) and (4) so
that c’= @ (x)e (). v(@@)>0 and define B (x,a ) 80
that B°(o, @ (o). () . v (W))€6.4 (B (x,w)) is satisfied.
Then from (3) and (4) we obtain that

glgtcx,0)€[3(x,c0) holds whenever (x,x )€ D,

gl x) & W, 6 <, €(X,x)),
i.e. t has property  6(iii).

Ad (iv): The first part of the assertion follows directly
from 8(iii). Since the function MB°(x, @°) in the proof of
8(111) can be chosen independently on oo , the secompart of
the assertion follows easily.

L3

This completes the proof of theorem 8.

9. Theorem Let t be an abstract global semi-flow on P, t°
an abstract global semi-flow on R* .,

(1) Let condition 5(1) be satisfied. If t° has property
6( v)°, then t has property 6(v).

(11) Let condition 5(ii) be satisfied. If t° has pro-

perty 6(v)° or 6(vi)®, then t has the corresponding proper—
ty 6(v) or 6(vi).

(111) Let condition 5(i) be satisfied. If t°
ty 6(v11)°, then t has property 6(vii).

has proper-

(iv) Let condition 5(ii) be satisfied. If t° has proper-

ty 6(vi1)® or 6(vii1)®, then t has the corresponding property
6(vii) or 6(viii).

(v) Let condition 5(1) be satisfied and let w (6)—> + o0

- 263 -



for 6+, If t° has property 6(1)° or 6(111)°, then
t has property 6(v).,

Proof. Ad (1): According to the assumption, there is a
function 0°(x, 27, @*°) such that ol @°< 7° for each
o 2 ot + 0%x,n°, @°), hence

(5) 6. (G CplyX, 0N E @ (0).V(pt, x,0)%, 82 < 7 °
tolds whenever '

(6) () (x). (g (X,x)) &% (X,

02+ 0°(x,n°, @°) .
Let there be given « € R, » > 0, @ > 0. Choose @’ and
7° 1in (5) and (6) so that 3’ 6. (), W% (). ¥ (@) v @)
and define @ (x,7, @)= 6%, 6. « (77), (u(a).r(ac) ww) .
Then from (5) and (6) there follows
G ot % 6) <7 whenever (x,& )€ D, g(X, )£ @, §),
62x4+6(x,m,®),

i.e. t has property 6(v).
Ad (11): The first part of the assertion follows direct-

x)e D,

ly from 9(i). To prove the second part, it suffices to obser-
ve that from 6(vi)® 1t follows that O°(«, %°, @) 1in the
proof of 6(1) does not depend on oL ; hence the existence of
theyfunction @ with the required properties follows easily.

Ad (1i1): According to the assumption there are functions
0°(x, @°) amd & *(ex) such that ;£ w® < 0*°(ax)
for each @  oc + 0°(x, @°) . Hence 1t follows that

(1) 6 i (Glot, X,0)) e (6). V(1. %,0)%,1] ©°<d ()
holds whenever

(8) (x,¢ )€ D, @) p(a)s v(@(X,a NS 02 + Gv‘fac,o').
Let there be given ac € R, co> 0, Take @° 1n (7) and (8)
80 that % (@) 3 (). w(c) and define the functions

~r .




@(x,w ) and d(x) so that the relations & (a, ) =
=0, w(x)e (x). () and " Yx) > . 4 ((x )) are sa-
tisfied. Hence and from (7) and (8) it follows that
ot x,0)%0(x) holds whenever (X,xd€ D,
g(X,x)E 0, 6 200 +0(x,),
i.e. t has property 6(vii).
Ad (iv): The proof follows easily from that of 9(iii),
Ad (v): First suppose that t° has property 6(1)°. Let
there be given w e R, 7 >0 and @ > 0. Let §° in (1)
and (2) be such that O<a®(«, §’)-€-(cc(x).a*(ft). W) .

Then §°
M (GGt X, 0 )) = W )

whenever (X, x)€ D, g(X,x )& @), € 2 . According to the
gﬂ
« (o)

assumption ~—> 0 for & —> + 00 , hence there exists

e°s%n) such that Fletix, 8) < 7 for ¢ » 8°C¢°, %) -
On defining 6(a, 9, @)= 6°C§°,m) -« (§°depends on o
and @ ), we obtain that
@ (st X%, 6) < 7  holds whenever (x,x)€ D,g(x,0t)<D,
e 2+ O (x,n,w),
i.6. t has property 6(v).
Now let t° have property 6(111)° and let there be given
« € R,n>0,and @ >0, Choose w® 1in (3) and (4) so
that @w®= w (x). *(2). ¥(w) . Then we have
B°(x, @°)
© (e)

g(X,x) & @, o2 x.
B°(ex, @®)
« (o)

i (Glots X,0)) = 5 whenever (X,a)€ D,

According to the assumption, — 0 for 9 + 0,

and hence there exists 0'(x,@% %) such that
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L et :c,?) )”<M'z> for & > O%x,a% 2 ). Setting

@(x,7n,@)=8"(x, %% )~ a , we obtain that

@lpt X, 0) = 7 holds whenever (x,a )e D,g.(x,x)4a),
@20t + 00, n,),
i.e. t has property 6(v); this completes the proof of theo-
rem 8,
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