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Commentationes Mathematicae Universitatis Carolinae

8,3 (1967)

APPROXIMATE SOLUTIONS OF EQUATIONS IN BANACH SPACES BY THE
NEWTON ITEBATIVE METHOD, PART 2, HAMMERSTEIN INTEGRAL
EQUATIONS
Zdenka: GROSCHAFTOVA, Praha

This paper is the continuatiom of the paper [5], the
knowl edge of which is assumed.
§ 3. We shall study the solution of the Hammerstein °*

integral equation

()
1) ¢l wwix) - [Kx, ) F(t,uct))dt-gx)=0
-1

by the method of collocation.

Let the function @ (x) be continuous on the inter-
val Y= {x l Ix1£ 13, the kernel ¥ (x,t) be continu=
ous on the square (= {(x,¢t)|Ix1£1, 1t |1 & 13,
the function & (t,z) be continuous as well as its first
and second derivatives with respect to 2 on the set
M -{Ct,x)l It|l & 4,~00<x <0 §.Some other assump-
tions will be given later.

Let us denote by A the matrix of the interpolating
points .x:"’, do = 0,1,0009m ; m=4q,2,.,., where we
have

(m)
m

)

m) )
@) 16X <Ry < <X x™ g 1

for the points of order m .

If £ is a function continuous on J , let us
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denote by £, (#, x ) .the Lagrangian interpolating polynomial

for the function f with the interpolating points af'"” s
) )

D‘fm PP ,x:"; I:‘ (X ) be the Lagrangian interpola-

b't:lng coefficients. For given m , there is

(m) (m)
lb (.X{ )= d;

~ ) i’fk'ﬂ 0,4""7”n 2

S 40 s

@»(‘F,D‘)sh'a

Furthermore, let A, be the matrix of Chebyshev interpola-
ting points

m 2 Ao +1

(3) ‘le = COd Tim+1) m, A = 0, 4;"')”"'1’"1"4'2:"')

A,  be the matrix of the points called the Lanczos inter-
polating points,

(4) Xf: = m,—%—ar, h=0,1..,m; m=12,..

(Lanczos [11),[12] ). The interpolatihg polynomials shall

be denoted by RN (¢, x), PP (4, x) resp.,

the Lagrangian interpolating coefficients by £§7 (x )
L{W (%) resp.

The Chebyshev interpolating points of order m are
the zeros of the Chebyshev polynomial Tmeq (X)), the Lan-
cz08 finterpolating points of order m are the zeros of the
Chebyshev fiolynomial of the second kind -'u,,,_ 1 (X) and the
points X = -1, X a= 4 ., We have the following

Lemma. For each function ¢ absdlutely continuous pn
‘the interval ¢ - 1 s 1 the following relations take
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place:

. _pE g x) =0, im4,2,
(5) M% .W&x“’,#(‘x) o (*f, ’

(6) %l‘”’(a&)lé4l’_+-z—l.qm,—4éxé4 ,

b 20

2 -14£x €1,
g ") & —-,Lqm
u.ol’%z‘("‘)l §+ ’ ‘

Proof. The relations (6),(7) have been proved by Ber-
man [1], the relation (5), for i =1 , has been proved by
Krylov [10J. Let us now prove the relation (5) for 1 =2 ,
We shall do it by showing that the assumptions of the theo-

rem of Bermen [2)are valid: the relation

(x) Xm max I $(x)= P (#,x)] =0

Mmyos -1ty
is fulfilled for each function f which is absolutely conti-
nuous on {( =4, 4 > if the matrix of the interpolating
points has the following properties: there exists an m, 6 N
such that, far m 2= m, and for each x € <~ 1, 1 ,

1) a) L4™(x)] 214 (%) | for X, < 35,.< X,

) |41 & 14T ()] for X < Xu,, < %,

2) | J“:',(x) | < M | where M= const is independent
on m and x .

It is easy to see that, for 0 & X & 1 ,

A
g B (0 AR s Saim SF )
" (x- xh)ih(.x.,) m
= R(Q’)F('\&.) ’
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"

= (m
where xm(x)-‘:[l; (X=X ), X, = X7,

X=esa  0&q £ ,

1
F(d) = m for he1,2,., m-1,

- =1 .
F@d) 2(x-1) Flg,) = 2(x+1)

Clearly, FCQ&’) >0 for P < o
F('l’jv)< 0 for 2% > B, h=1,2,..m-1
F(%)< 0,
F&A,)>0.

J

Let -1 £ x < x‘"4<‘x‘“ < X%, = 1 , and therefore

17’219>'19‘.”>1&' >1% = 0 , Then

s, 001 IR0 ol 2 R@| gl e 1g 0.
.3 +4

If X, € x<x < 0, thna 2a8 >q4 > ,and

' wWe have

Il,,(x)lis-(n”la;;i’—_mz IR iﬂj-_M'_' 14, (x)].

This proves the assumption } a) of the Berman thecrem. The

proof of 1 b) is analogous.

The proofbof 2) for the Lanczos polynomials has been given

by Stehlik {15], the constant M being equal to 2
Remark. Jegorova [6] presents the proof of (x) for

the matrix given by the zeros of Chebyshev polynomials orf

the second kind U, (X ) using the Berman theorem as well.
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The Lanczos interpolating points are obtﬂned by adjoining
the points =1, 1 to the zeros of %, , (X) . In spi-
te of this, the validity of the relation (x) is not obvious.
For example, adjo_ining the points - 1, 1 to the zeros of
the Chebyshev polynomials T, (X ) , an analogous asser-
tion will not take place; for example, for the function lx !
on. {-1, 1 %  the sequence of the interpolating poly-
nomials diverges at the point O (Berman [3]).

Let us now present a special choice of tﬁe spaces and
operators given in § 2 [5). X be the space C (-1, 1>
with the Chebyshev norm, Xm the space of polynomials of

order m=-1, X, the space of vectors & = (&, , &, i, ,

)

with the norm

" Y . - max 'Eh l .
0 R Em-1

The operator E,  assodiates to each function + € X its
interpolating polynomial @3 . (4, X )  with the Chebys-
hev or Lanczos interpolating points. The operators Ywm+4

OF  Chumy 41 associate to each polynomial or continuous
function f resp. the vector (f(x!™),..., £ (;X::", )) of

the space )-(m +» Clearly,
(8) he, Il = 1 for m = 1,2,... .

The operator 'qr;i P associates to the vector 17(‘"’-
— = (m) n) — (m)
.(v""':’,v,,, F ™) the polynomial h_g' 2L (x)
M’ ’
( 2% denotes here and later on ALY (x), 4 =1,2 ).
Thus,

-1 (m)
LR | 6_m4 - AT (), mox 1,2,

and the same inequality takes place for N %, .. I .
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According to (6),(7) for »m —» 00 , there is
9 My, 0= 0(Lgm), VB, I = 0gm) .

Defining the operators K and F by the relations
1
me CL-1,1> va K @b v (x)= [ F(x,t)u(t)dE,
-1

$el<-1,1), g=Ffem g(x)= Fix,f(x)),

the equation I of § 2 [5] gets the form (1), the eqations
III,IV being of the forms

1 m .
(10) &= [Hx™E) f(t,:zo 2™t )i, dt = glx;),
-1 "

i<0,4,..., m ,

! $ — (m) -
an T SAHET S 4 Tt F At = §04,
-1

i = 0,10, m )

respectively.
Now, it 1s possible to prove

Theorem 1. Suppbse the validity of the assumptions &j.
ven above, as well as:

A) The function g(x). is the equation (1) be absolutely
continuous on { -4, 41 ) , Let K (x,t ) be an ap.
solutely continuous function of x on 4 -4., 1> for
each t € (-1, 1 > .

B) Let the linear integral equation

o
V(X) = [H(X,8) Gt u, (D (E)dt = £(x)
-1
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A4, being a polynomial of degree s and te C<-1,1)

being arbitrary, have the resolvent g' (x,t), and,
furthermore,

1
2)  f1gx,t)ldt & &, IxI£1,
-1

1
(13) | S Hx, 1) F Oty (£ At - 4, (X + g X) | &
-1
£ pR, Ixle 1 ,

o S K Cx, b £2 ()| dt € s
-1

on the set Sd—f{(.x,z)llo&l!.—4, lZ-w, (X)) &€ n § ,°

(15) ;1,>/1,°£ 4"‘:”;2”" (1+ax)B8 ,
f
(16) hi(’1+a)"/3?&< -% .

Then the systems of equations (10) have, starting from

— - :

s certain o = b , solutions g = (&iwy..., &0 )
to which there converge the Newton iterative processes (ordi-

nary or modified) with the initial approximations

(m)

AN A e () (k™) gy 4, (5P ))

Furthermore, there is

M
8) im  mac |aw*(x)- e )V Z™ | =
@ miu:"-‘ﬂ‘xt‘l h%‘l" X 0

w* being the solution of (1) given by the Newton iterati-
ve process with the initial approximation Ay .
it
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c) h < N1, ?

af 1+V1-2k (1.ax)p
A

then, starting from a sufficiently large m , the solutions

of (10) are unique on the set

S e i ey | By, 1 €IV

Proof. It is clear that the assertion of the theorem
is identique with the assertion of Theorem 1, § 2 [5] for
the special spaces and operators chosen above. Therefore it
suffices to show that the assumptions A) - C), resp. D) of
that theorem take place. The assumptions C,D) follow immedia-
tely from our assumptions B),C), It remain; to show that A),
B) of Theorem 1 § 2 take place.

~ The assumption A) on> K 1is clearly fulfilled.
Further, F¥ (w ) 1is bounded as its norm

max |E% (x,4 (X)) 1is bounded on each bounded set of
AExgq =%

functions ¢ € C ( -1,1 > , this being true becau-
se the function &7 (x,z ) 1is continuous on M .
B) takes place according to (5). Further,

1 .
VK-R., K& mag [1H(x,t)- G (Hix,t)x)]at .

From our assumption A) and from (5) it follows that, for

each ‘'t € (-1, 1 > , the sequence of non-negative func-

tions { Cpm (t)}, %‘*’-,M,"““»*’- R (H(x,t), x)|
~1&x

converges to zero. From this it follows (as there exists a

constant M such that | € ()l < M for all m and
. 1

all t € <{-4,1> )that Lm [ g, (t)dt =

M\v"’”_q
1
= [ lm o (t)dt =0 ., Thue, IK-B, Kl 520 -

"nye
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The proof of Theorem 1 is complete.

Theorem 2. A) Let the assumptions B) of Theorem 1 take
place.

B) Let there exist positive numbers o , M such
that @ (X)) € &'fvmoo on ¢(-1,1)> and X (x,t)
as a function of x belongs to the class i"‘f"m -4 on
{(=1,1> foreach t € (-1, 1) ., Let there exist
continuous partial derivatives 9;' (X, z), fg (x,z)
on M .

C) Let there, starting from some m = 7,  exist
the matrices { a,i‘.";,’ 3 inverse to the matrices {Iff:’}

where
J OF  F m,, —m)
(19) 4= ;- [H ™) b, Z TR k) dt
-1

i,8 2 0,4,..., m ,
E,{:‘" being the solutions of the systems (10) from the
assertion of Theorem l.

Let there exist a constant ¢ > 0 such that, for
all m 2 m, ’the:_re is

i 4 (m)
(20) mac 2 la. |l <e .
04 £m Gc° ?

Then the systems (11) have, for m =2 m, ,solutions

— (m)

* such that
5 - () — (m)
bm max |4 - | 0.
(21) Mmoo Osh€m b Vi » =

Proof. As in Theorem 1, it is clear that, for our
choice of spaces and operators, our assumptions imply the

assumptions A),B) of theorem 2 § 2 [5], and the assertion
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of our theorem is identical to that one of Theorem 2,§ 2. iv
remains to show that the assumption C) of that theorem, 1.5.,
the relations (19) - (22), § 2 [5) take place. According to
(8),(9), it suffices to study the sequences

lg-R,gl, IK-8 KI, 1(I-B ) Fu*ll, I(I-BIFw*ll .

It is easy to show that, if f € b&lpn o on (-1,1>,
there is

£
(22) 1CI-B ¢ = O(—22—) .

Indeed, 2,,” being the polynomial of the best approxima-
tion for £ on (-1, 1 > there is

He-B, ¢0= N(I-B)($-g & (1+UR DIf-g,0¢

£+ 1B NI) mag 1#(xX)=q, (XNEM+NE 1) E.. -

v
14 x &1

Following the Jackson theorem [14] there is € £ €~ ,

C depending only on the length of the interval and on the
number o¢ . According to (9), this implies (22). Special-
ly, for there is

(23) Ilq,-l?,,,ql:(f(%?).
Further, there is

4
IK-B, Kl € mar SI1Hx,t)= P (K(x,t),x)]dt .
-1

From the assumption sbout X (X, ), it follows that,
for each t € (-4, 1 ), there mlx(u,#)-z,,(x,f)é

M ‘
£ L ;n—‘? where C does not depend on t . Thus we have,
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for e -» @ ,

¢

(24) IIK-EWKI=W;,',,’?)‘

Tne function /K (X, ) F (t, v (t))dt | far
-1

v € C(-1,1 > belongs to the class %M, x
v
Moo= M [IFCHrENIAt .

As g € &:ﬂn o , 1t follows from the equation (1) that
each its continuous solution u (namely w*) belongs to

the class WM““ a, M1«. - min (M, M, ) . The

assumptions about the derivatives ?;" , 9_;’; imply the
existence of numbers M, , M,  such that
Flx, w*(x) € &'pr‘OL, &'k, ¥ (X)) € ‘ﬂf"n, x .
Using the same procedure as that for proving (23), we
get the relations

25) I (IR dFu*ll= 0( A2 )  tamyo,

(26) l\(I—B‘,ﬂ)F'(“"')"-U(:—:;—”) for m —» cO -

It follows from (8),(9),(23),(24),(25),(26) that the
left-hand sides of (19),(20),(21),(22) of § 2 L51 are, for
& .
the given (v, &,5,t), 0’("('%3‘1)); x >0 ,

and they have, for am —» @  , the limit equal to zero.
This completes the proof of Theorem 2.

Remark. In concrete cases, the verification of the as='
sumption about the matrices { a.f';’ } may be aifficulti-
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In spife of this, the theorem gives some information about
the possibility of solving (11) instead of (10). For example,
for the Gauss interpolating points (the zeros of Legendre
polynomials), the theorem cannot be proved. In fact, in this
case there is Il B, | = O (Vam ), and the relations
(19) - (22) of § 2 (5] do not take place.
. It is very advantageous to use the system (11) instead
of (10) namely in the case when the function % (2,2 ) de-
pends on 2z only. Then the equation (11) gets the simple

fornm

m
T 2 Ay FBT) + g (x™), £=0,10,m,

1
A= [ H X, t)r4, trdt.
-1
Exagple 1. Let the equation (1) have the form
u(u)eo./’dé(u,tu““’dt r Jlx-x",0ex4 1,

H(x,t)= x(1-t) for x £ t,

t(41 -x) for t = %X .

To solve this equation is equivalent to the boundary pro-
blem :
" ' @i 4
Mm(x)+re T+ 1=0, 0<x< s

m(0) = (1)= 0,

The initial approximation was obtained using the theo-
rem of Bohl [41].
We get the approximate solution in the form

M, (X)= 1,234 (o ;X + Ay AMm &, X = 1) ,
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a,= 1,0¥522, o«,= 0,5961% .

For the initial approximation there was taken the polynomial
Mo (X) of degree four obtained from 42, (x ) by the
interpolation with the Lanczos interpolating points f:""
(for the interval < 0, 1 > )o It is easy to show that
the conditions of Theoremsl and 2 are satisfied with the ex-
ception of the condition C) of Theorem 2 (see Remark follo-
wing Theorem 2). We are going to verify them for ZZ’ and
then to show that they will take place for &, , too.
In the first place, the functions ¥ (X, ¢ ), Flt,z )=

iy

. %
=€, g(x)= %(;X-.X2> have clearly all the nee-

ded properties and so the assumptions A) of Theorem 1 and B)
of Theorem 2 are fulfilled. It remains to verify B) and C)

of Theorem 1.

There is

j%(x,f)dt = 0,125 ,

D‘aé'f

ek | &, (x)] € 0,28293

VKF(Z1 < 0,16588 < 1, so

?
VL I-K PO, T ¢ g < h1988¥= 1+ «
W& - KFg,-gll < 0,5¥381 = B

FKF'(w)l < 0,5 = 0¢, if oL, lae (x| € 1,3863 ,

ive. for ll,u.-.(z‘, l < 14,1034 = ~ ;

(M+&) Boe < 04126 = h < §

)
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‘1‘[1-- -2R] (1+x)B < 0,96982 =4, < 4 ;

L1+ VITTRIU+a) 3 > 2,%6631 = £, > 1 .

The result for the polynomial 44, (X ) will be al-
80 valid as the error of the approximation is not larger
than

s mqla,“’(xn;”,; smax. 1 (1< 1,20,
From the validity of the verified conditions there follows
that the equation (1) has a unique solution ¥ (x ) on
the ball S (u, , &£ )  of the space C <0, 1 > .

Por the discretization, we have used the collocation
with Lanczos ‘interpolating‘ points’{x:" }, =0,1,.0.,m
for m = 4,6,8 , i.e. ,‘ with %, 7, 9 points, resp.

Denoting the Lanczos polynomial of order m for
{-4,1> vy &, (x) there will be, for the polyno-
mial Z,, (x) transformed to the interval < 0, 1 D ,

fmtao = L (2XX-1) .

(m)

The interpolating points X~ are the zeros of Zm (x);

e d (Mecos BL), k=0,9,.,m.

The Lagrangian interpolating coefficients 4;:') (X) =
)2:.,, (x)
(x - xoy &2 (<L)

expression ( [11],chap.4)

wqre obtained from the Lanczns



» . 27 T ()
4 (x) = M-z;‘% ecn b T ’

S {- + +4 a T cx)
where R = "5"'“3*'“ a;”.’ 2 '~ and In x

are Chebyshev polynomials transformed to € 0, 1 > .

The systems (10) havgg_the form
m_ f:fC(-x-“"’ ”émz,, e aly dt- i(.x“"’ fx~1%),

i: 0, 4,0.., m .

The systems (11) become much more simple:

“'-" 2 Aln eﬁ‘ F = Ix™3), 4 =0, 1y,
where AR = fxnx )L rdt .

These systems were solved on the computer Ural II. This met-
hod, in the form just presented, is not suitable for a great
number of interpolating points because the coefficients of
the polynomials .2:“ (x ) become too large (for m = 4
the greatest coefficient is about 8.10! y for m =10 about
9.10% ),

For the computation of A‘""’

there was used the doub-
le precision in the subprogram for the computation of the
values of a polyhomial in interpolating points. For m = 4,6,
9 and the error
of computation was on the last eigth place. The systems were

solved by the modified Newton method with the initial appro=-

we had also the exact values of A“™

ximations (nr“"‘") = (.u (.x“"") ey AL, (X)), The vec-
, for all m ,did not change .
starting from the second iteration. The residuum-vectors

tors of solutions (%™ ‘m



were of order 10~

10°2 ) - gee Table 1.

maximally (the order of solutions is

The proof of existence and the error estimate were done
using the Theorem of Kantorovich [5) and the formula for the
error estimate of the modified Newton method ~(see [ 7], p.
633). In all the three cases, the theoretical error was smal-
ler than 10°" . This theoretical estimmte does not entirely
" describe the reality because of the rounding-off errors (see
Table 1 - a slight disturbance of the symmetry).

If we denote by 4 “™’  the solutions obtained by the
procedure just described, we get the polynomials approxima=-

ting the solution of (1) in the form

m
(m) (m) — ()
™ ) -*% L (%)

The values of these polynomials weré tabulated in equidistant
points with the step 0,1 - see Table 2,

The values mar (7™ (x) - w*(x) | can be
VExE1

estimated in the following manner(similarly as it is made in

the paper of Mysovskich [13] for the solution obtained by the

method of mechanic quadrature): the function 2r®’(x) may

be taken as the initial approximation of 4 *(x)  in the

Theorem of Kantorovich [5], and we have: ‘
Ir

1) ] f—',‘,,, I € e,

4 P
where (5, = (1-A, )" A,,h-'/xm,we"“”"h(wdt ,

«et)

4
t dt £ -
2) may '/ Hix,t)e € Ky for max lau(x)

~™ex) | £ O
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1 a:
3 s 107X~ /%(u,we t-fx-x*)& 7, ,

4)0,«20,-;1_*'_____!_%» VM1-2bpe  79p s

om

b e K e & T

then

™y £ L

mae | w*Cx) -
VEXS1

This estimate has been done for m = 4 (analogously it could

be done for other m 8):

1) There is Il A, Il 0,125, max e ¢ 0,153463 < 4

so _
I 50 & 4,1813 .

L 3

2) Let us choose O] = 0,00058 . There is

f:ff(\x t)dt ,wa 4™ o 04534= K,

0‘«*4

Q= {u|mas | (x) = v@(x)| & ) §

3) The verification of the condition 3) is somewhat complica-
ted as the integral

1 &)
%)= K (x,treV ot
0

cannot be written as a combination of elementary functions.
We shall estimate it in the following manner:
There 18 0 & v¥(x)& 0,3, x € £0,1> .
On the interval << 0,1 » let us approximate the func-
tion ¢ (x) = 2 %3% by the polynomial
R(z)= 3 40z f ) .

Row, there is
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v, g (%Q;‘,l"’(x))... Q(x)a L, (x)+ R(x).

Let us write
o4 1
T = fHx,t)L, (trdt .

N e A (2)5.4,35¢0,00000342
There is omql Qx| 235!(10) s P

and so

-7 3.
(x) oml%(&) J,(x)l < 0,0000004

With regard to (x), there has been found
N, = 0,00003% .

4) There is 4'&,, = 0,00000%928 ,
Opy = 0,000043% < ]

80 that

mai | a*(x)- a(x)1 & 0,000043%.
0ExE1

Example 2. In the same way as in Example 1, there has
been solved the system of two nonlinear eguations obtained
when solving the problem of nonlinear bending of a thin cir-
cular plate clamped on the boundary subjected to & uniform
lateral pressure.

In this example, all the conditions of the Theorems 1
and 2 are not verified and the error estimate is not given.
In fact, the computations for doing this are rather complica-
ted and not well available in the practice. We wanted only to
show that the method of collocation can be used also in a non-
trivial case using rather few interpolating points.

The system of two differential equations of the second
order is in this case given by (see Keller-Reiss [8))
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Log(x) = -g(X)yx) - Px*
%vﬁx)=%q’(x) ’ 0< x <1,

¥ x £ 14 x

dx X dx ’

@0) = y(0) =0, g =0, ¥ )= y-w(1),

where P is a constant proportional to the pressure, ¥
is a constant depending on the material.
Intrbducing new unknown functions 4 = % &L o
v = % Y , the absolute term will be the same for a]:l
P , and we get the system

L (x)= --E-M(N)V(\X) - 8x*

teoe Baten,  Dex<d,

w(0) e v (0)s 0, 4()=0, ¥ (1)=vr{1).

Using Green’s functions, we get the equivalent system

of two integral equations

4
{!, [, w]sa (X)+ {-/g, (%, £)aa (£ r(E)dE ~F()=0,
(1) ,
¥, lupvls v 0-£ [ (D uld)dt =0,
where f(X)= X~ x3 ’
0,-.(0(.“:%(«‘—:-‘)\? for t £ X,

aé(t-%?x for X & T,
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"
%

,%(“’t)g--;-(hx-rg- )t for t

<-Fhtedly  for x &t

1+y
n = .
1-v
This problem has been solved for ¥ = 0,3 and for

the following values of P : P = 50, P= 300, P = 1400 ,
P = 3000, P = 5000 .
The choice of the spaces and operators is as follows:
X is the space of couples of continuous functions on

the interval < 0,1>, 4 = [4 ; 2 ] , with the norm

~
X,,m is the space of couples of polynomials of order m ,

+4 the space of couples of (m + 1)-dimensional vectors

><
2

—m) =
L2 7 ‘m 7“7 with the norm

8l

n — () m) —(N} .

) =0
ly = max { &, T 7., T

The operator 1'4 mapping X into X 1is given by
y[M;VJ-EY‘,EM;VJ;y‘[M;VJJ,
the operators F, K by
Fluw;v]l= [~y u?l,
K[a,)zJa[—ief'Q(x,t)»yctmt;;%f’Q (x,t)z(t)dt]
HERG ¢
Pu) c2)

P ’9(-” W are
PYfusvl=[P u;P »1,

Analogously, the operators

gPusvls [gusgv] ,



yPlu,vl=lyu; yvrl .

The solution has been obtained by the method of collocation

with the Lanczos polynomial EZM (x) for m=6, i.e.,

for T interpalating points ; = x,{" on the interval (0,7
The system (11) is now a system of 2(m + 1) ( = 14 )

algebraic equations for 2(m + 1) unknowns
_ p & - - =
ity = Ain oy vy =% =0,
(11°)
{a -

=lo
M
»
*
R
]
S

where
1 , (8
A= A, A0 =[G oxt) g (0 de,

1 )
B = BCX) By coc)so/Q, (x,t) 4, (trat .

The coefficients A"-& , B‘i were calculated exactly as
vJell as by means of the computer Ural II (again using the doub-
le precision as in Example 1l). The obtained results were exact
on 6 - 7 places in the case of Ay, , and on 5 places in
the case of B,'- , this being not as good as in the case

of the simple Green’s function in Ixample l.
The initial approximation has been obtained in the follo=-
wing way: we look for a function M.:P’(.x) of the form

&P. f(x), ?tp = econdl (depending on P ). If we de-

note by ¥ the residuun of (1°) for = &, ,

q
2P(x) = "E,f G, (X, 82, (8) g5 (£) At +(x-X*)(1-2,) =
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t 3 T .1
= ‘4‘% [5/41(X,¢>4,(o,t)u,(/»m‘(t)dt as +

+(1-2) (x-x3) ,
and we determine a,, from the condition

1.
[ h (x)dx =0,
»
This leads to the equation of order three for A, ,
3 A
Aot @, A= ap=0, a,=5; , A= 2493, 66,
with the unique positive solution
= V__e_z“ .
hp 3 bh ’l’P , hh 3'1% = #
” 3
The functions v (x) can then be obtained by solving
the second equation in (1°) for . = «f” .

In this way, the following approximated values for .ﬁp

have been obtained:

Ao = 09085, A, = 0,488%9, A, = 0,2028 ,

Moy = 0,1258, 2

(1)

= 0,0006% .

The systems (11°) were again solved by the Newton modified
method with the initial approximations

(2 ] (7] w, ;
oy = sy (%), v = Tk, A0, 6

The vectors of solution AZ, g do not change for
P = 50, starting from the 3* , for P = 300 from the 7* ,
for P = 1400 from the 10tA 3 for P = 3000 and P = 5000
from the 11*%* iteration. For P = 50 and P = 300 , the ini-
tial approximation was so good that there could be done the

proof of convergence following Theorem of Kantorovich.
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For the other P’s, in spite of the fact that the vec-
tors of solution did not change, the sufficient conditions
of Theorem of Kantorovich were not fulfilled. Therefore, for
these P’s (1400, 3000, 5000 ), the iteration-cycle was re-
peated with the initial approximations equal to the vectors
of solution from the first cycle.

The vectors of solution did not change any more, and now the
proof of convergence could be‘ done.

The residuum-vectors of (11°), for all the values of P,

were, for the initial approximations &£(”, 7,7, of order

10'2 - 10°% , and realizing the iterations they decreased
to the maximal values of order 10°" . The order of solution
is 10'4 - 10" « The error estimate shows again that the
systems (11°) were solved exactly within the limits of the
given computer (but without having regard to the rounding-off
errors as in Example 1).

The functions & (x), 77 (x ) giving the approximate

solutions of (1°), are given by

a (x) ‘h% l:’(\x)ﬁ,,_ )

Fx) ‘4.% L8 3,

The functions g(x): 'SEA'Z(%) , 1?'(“)‘; F(X) were
calculated in eleven equidistant points - see Table 3, graph
1,2,

Repark 1. The same problem has been solved by Keller
and Reiss in [8] by another method. In their pspar, there are
no numerical results but the éraph of the function 4 is

the same as that presented in this paper.
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Remark 2. In 1966, there appeared the psper [16] devo-
ted to the method of collocation for nonlinear differential
boundary value problems. The results of Vajnikko are based
on other assumptions and techniques than are those used in
this paper, and there is no regard to the approximations of
the type (11). Such types of approximation are studied in a
paper of Kolodner [9) . The considerations of this paper are

based on other principles.

TABLE 1,
(Example 1.) .
The values: (F“pm (B2, 5%, G2, (R = (Ron , Koy ).

- ()

Fi:? ”'4‘11\.

n=0, i =0 0 0
1 0,13977676 | -0,10613883 10~
2 0,28302447 | =-0,37531793 10°%
3 0,13979381 | -0,89532841 107

4 0 0

n=l, 1 = 0 0 0
1 0,13990479 | -0,39726729 10°®
2 0,28345147 | -0,10069926 10°¥
3 0,13990482 | -0,38999132 107

4 0 0

n=2, i =0 ) [
1 0,13990480 | =-0,14551915 10°®

2 0,28345149 0

3 0,13990482 0

4 Q 0
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TABLE .1, (part 2.)
(Example 1l.)

The values:(#®)=(Fn, T B0, (R = (B, E,ffﬁ, By .
T R
n=0,1=0Q (Y o
1 0,069446171 | -0,59570186 10°Y
2 0,21096851 -0,18536916 10°%
3 0,28302447 | -0,35908231 10-*
4 0,21098071 | -0,17261709 10°?
5 0,069466617 | -0,39373932 1074
6 0 0
n=11i=0 0 : 0
1 0,069515036 | -0,14115357 10°%
2 0,21118615 | -0,51513779 10°*
3 0,28343070 | ~0,79744496 10°*
4 0,21118511 | -0,50640665 10-¢
5 0,0695157 | -0,13533281 10~
6 [+ 0
n=2,1i=0 a o
1 0,069515037 | -0,29103831 10°®
2 0,21118616 | -0,29103831  10°®
3 0,28343071 -0,58207661 10°%
4 0,21118512 | +0,58207661 107%
5 0,069515029 | -0,14551915 10°®
6 0 Q
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The values(¥ L‘

n=0,1=0

n=1, 1=

ZABLE 1. (part 3.)

m-amm.pu»v-ovmﬂmm»umwomqm\naUNr—-

(Example 1.)

’?ﬁ’""?o‘:’)’ ¢ A (%, nﬂ 405’ l:)'
— 8
im Ec'(:

(o 0
0,040566447 | -0,46632616 10~
0,13977676 | =-0,98941498 10°*
0,24070954 | -0,24377918 10°°
0,28302447 | -0,35898626 10-*
0,24071893 | -0,23476858 10~°
0,13979381 | -0,82279556 10-4
0,40588348 | -0,24870096 10°*

-0 0

0 0
0,040618381 | -0,80763129 10~?
0,13989554 | -0,30267984 10°*
0,24099134 | -0,61409082 10-*
0,28343051 -0,78580342 10
0,24099132 | -0,60827006 10~¢
0,13989551 | =-0,29976945 10-*
0,040618366 | -0,77125151 1077

0 0

Y. 0
0,040618382 | -0,72759576 10°"
0,13989554 o
0,24099134 -0,29103831 10°%
0,28343051 | -0,58207661 10~™
0,24099132 | -0,29103831 10"
0,13989551 ' ()
0,040618366 | -0,72759576 10-"

o 0
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(Example 1l.)

The values of the polynomials
points X; = 0, 11

O 0 =N M v s W N P O

[
o

V{”’(X)

in equidistant

w®ex;) v®rx,) v ®x,)

o 0 ()
0,10036435 0,10037304 0,10037333
0,17973078 0,17970254 0,17970252
0,23712032 0,23708111 0,23707951
10,27183372 0,27180541 0,27180089
0,28345147 0,28343136 .0,283 43062
0,27183370 0,27180715 0,27178565
0,23712037 0,23708441 0,23704911
0,17973073 0,17970729 0,17965961
0,10036431 0,10037954 0,10032808
-0,45169145 10°F o o
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ZABLE 3,
(Example 2.)

The values of the polynomials '9"("(%), Vm(.x) in equidistant

points X; = 0,1 4
G | T ex) G txy)
1=0 0 0 0
1 0,54582458 1,42030834 | 2,07944345
2 1,06195006 2,81844292 | 4,19079255
3 1,51784262 4,16235038 | 6,38915918
4 1,88103525 5,39500725 | = 8,64690470
5 2,11675850 6,41662912 | 10,89814198
3 2,18776806 7,06862888 | 12,97523570
7 2,05436962 7,11933975 | 14,43730208
8 1,67464050 6,25149188 | 14,29070895
9 1,00484850 4,05144562 | 10,60157315
10 0 0 0
¥ (x;) 7 (x;) T %)
1=0 0 0 0
1 -0,19363374 -1,93102459 | -6,98411525
2 -0,37623782 -3,78312450 | -13,75727518
3 -0,53824804 -5,49201712 | =20,21555025
4 -0,67226338 -6,98688488 | -26,19116325
5 ~0,77464256 -8,21133900 | =31,47261950
6 ~0,84625012 -9,13873538 | =35,84621950
7 -0,89235338 -9,78185588 | -39,15897125
) -0,92166812 | =-10,19695012 | -41,4@R87550
9 -0,94455544 | -10,48213200 | -42,82061350
10 -0,97036781 | -10,77014325 | -44,03261625
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TABLE 3.(part 2,)
(Example 2.)

The values of the polynomials c?w(.x), #"tx) in equidistant

points X; = 0,1 4

(7(1000) (x;) G coom (x;)

i=0 (¢} 0
1 2,51775120 2,94737262
2 5,01375412 5,68467869
3 7,74926325 8,8832 4062
4 10,59133650 12,21431000
5 13,45863375 15,46953312
6 16,36193025 18,85822312
T 19,03935825 22,48038062
8 20,18636475 24,97721688
9 16,28039025 21,35742875

10 0 0

{V" (3000) (; ) ‘ﬁ; t5000) (x;)

i=0 0 0
1 -12,27117150 -17,70502096
2 -24,20771850 =34,964173562
3 -35,67802538 -51,60107100
4 -46,47269625 ~67,37054812
5 =56.,26567875 -81,85218125
6 -64,64851500 ~94,46109869
K4 =71,23773750 -104,58786144
8 -75,85545000 -111,86352800
9 -78,78298500 -116,55041412
10 -81,08775750 -120,05858125
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