Commentationes Mathematicae Universitatis Carolinae

Tomáš Jech
A correction to my paper: "Interdependence of weakened forms of axiom of choice"

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 3, 567
Persistent URL: http://dml.cz/dmlcz/105133

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
8,3(1957)
$$

A CORRECIION TO MY PAPER INTERDEPENDENCE OF WEAKENED FORNS

 OF THE AXIOM OF CHOICE (Comment.Math.Univ.Carolinee 7,3(1966),$$
\begin{aligned}
& \text { (1966), pp. 359-371) } \\
& \text { Tomás JECH, Praha }
\end{aligned}
$$

In the definition of the generalized principle of dependent choices (PDC K_{α}) a few words are mistakenly missing (p .360).

The complete text of the definition runs as follows:
" Let a be a set and R a relation such that for every $\gamma \in \omega_{\alpha}$ and every $g \in a^{\gamma}$ (function of γ into a) there is $x \in a \quad$ with $\langle q, x\rangle \in R$. Then there is a function $f \in a^{\omega_{\alpha}} \quad$ with $\langle f \wedge \gamma, f(\dot{\gamma})\rangle \in R$ for every $\boldsymbol{\gamma} \in \omega_{\infty} "$.

I apologize to the reader for this oversight.

DECOMPOSITION OF METRIC SPACE INTO NOWH¿RE DENSE SETS (this Journal 8,3,pp.387-404): A correction

Petr Štěpánek, Petr Vopěnka, Praha
When this issue of Comment.Math.Univ.Carolinae has been already prepeared to press, we have found that in our article there is a certain oversight. The proof of Proposition 3.10 needs that the fundamental system $\left\{V_{s}, \$ 6 \omega_{k}\right\}$ of neighbourhoods of the diagonal in the uniformity τ is linearly ofdered

