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Commentationes Mathematicae Universitatis Carolinae
9,1 (1968)
NETS. AND GROUPOIDS, II x)
Véclav HAVEL, Brno

In the sequel we shall introduce and analyse the notion
of a general net which has been suggested by the final re-
marks in [2].

Definjtion 1. A (general) pet is defined here as a quad-
ruplet (P, %,Y, X&) where P is a set and &,Y, X are
partitions on P . we shall restrict ourselves to nets
(P,X,4,X) such that card X = card Y = caxd X and
eamrd (XAYNZ)ed for all X € B, YeY, Ze X.( P: the
set of the points, U Y U X : the set of the ligeg, X :
the set of the X =-lipes, Y : the set of the U =lings,

X : the set of the X -ligeg.)

Definition la. Two nets (P& @@ y@ %)) =12,
are said to be isomorphic if there is a bijection 67: P‘"—
— P® guch that X € £ = 6X e Y, Ye Y =

2 oYeY?®, ZeX = 6ZeX?

Definition 2. A gultigroupgid is defined as a couple
(S, ) where S is a non-void set and « & map of SxS
into ® (S ). We shall restrict ourselves to multigroupoids

x) Part I in CMUC 8,3(1967),pp.435-451.
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(S, @) such that to every a e S there exista’,a’e S
satisfying w (a’;a)+ 0+ w (a,a”) .
Definitiop 2a. Two multigroupoids ( S, (a,("’ )

4 =1, 2 , are said to be isgtgpic if there exist bijec-
tions

29 » . 2
;S 86 5 (3¢ s, 5%, 7;",‘}){5«;‘5{0(“' (“’y)z.’,%g‘yz(é»‘xly)

o
such that ‘u.""(oc a,3&)= 7%, ) tor 211 @, be s’ .

Copatruction 1. Let N'= (P, £, Y, X)) be a net.
Choose maps § : ¥— S (a bijection), 7: Y — S (a
bijection) and S : Z— S (an injection) where S is a
set with card S = card X = cardl Y . Now define the
mp @ : S S—» R(S) insucha way that w(@,&):=
i={cesI§l@Inyl@Igcr+ # 3 forall a, €
€ S. Then (5, «) is a multigroupoid in our sense.
(S, ) =: g’fv’t,? (X))

Congtructiopn 2. Let G =(S5,«) be a multigroupoid.
Start from S S  and substitute each (a,&)e S< S

by the set 5‘,", where (i) there exists a bijectiom <% ¢ *
@, b)— G, , forall a, & e S and (i1)

Sa ;N Sap, = @ for any distinct cowples (@,,4;) ,
(@, &,)€ S xS . Now derine E:={ L § o |&e S}, Y:=
‘={Er%}ssa,b‘ae$}r &: :;i‘g‘(a:s‘))‘“s(:,swfqmb ()} leew (5%S)F -
By assumptions about G , the sets ¥, Y, X must be
partitions on P‘i,b;Lch,as S0, cand X = card Y = cand X
and cand (XN Y AZ)< 1 for all(X,Y, Z.)e.'rxy"x-
Thus (P, %,%, &) is a net in our sense.

¢ (P7 x7 u’z)= : 77&%,.0;3(@,&)35#5 (@)



Theoprep 1. If V= (P,X,Y, &) is a net then each

orphiec to N .
n"ﬂ,ﬂm,Mest(%ﬂ’g (AN')) 1is isomorphic to e

G=(5,) is a multigroupoid then %'Q,S(@qa’&ih’&kslst))
is igotopic to G .
Proof, Let N'= (P, 2, Y, &) be a net. Construct

G:= gf»’l,i (N') = (S, ) and N = @%o!a,wcsxs(cy)z(kx”yl’x’)'
Now let us define the map 6z P—» P’  in such a way that to
each ft € [P we associate p’= Six,my (§Z) where X,
Y, Z are determined bypneXeX, neYey, neZe X.
We easily see that 6 realizes an isomorphism between N

and N .

Secondly, let G= (S, <) be a multigroupoid. Construct

¥:= 4‘,‘,&,{“’5)55‘5(6)’3(/3%',@,2)and Gt= G AV=(S]e")-
Now define maps a:5— S B3:5—+S’ andf[(;b{&‘gfﬂ,y)&z,)%g‘;{“:'yﬂ

in such a way that awa: (4L S, o ) forall @ € S ,
BUr:i=§(L)S, 4) forall €S ama gc: =

a&s <

= Schns & ) for all c € Uge (X, 4) .
Ew:t‘f.’?e‘ et %4 S ACI

As
cepc(@,b)@g*ce#'(aa,,ﬁb), (e, 3, o)

represents an isotopy between G and G’ . Q.E.D.

: )1 (D gl
Theoren 2. Let N'¥= (PHXGYySx®), 11,2,
be nets. Then N'%) 4= 1,2 ,are isomorphic iff qf“?*z“".i“’(fﬂ)'

i=1,2 , are isotopic (for some, and consequently for all
choices of f“’,'rlm’ g‘” ).
Proof. Let 6: P™”— P® be a map which mediates an
N NN e (@) !
isomorphism between and « Then(§ o060 § >
- -1
gal 6‘.-;2,"’ . ?""’. 6o g‘"’ ) represents the required isotopy

)
between (S, (u,"’) and (5‘2, (wm’).Conversely, let

- 8G -



(oc,[&, . ) represent an isotopy between (5"’, (q'“”) and
(5@, (.(,w ) . Define the map & : P — P in such a
way that for eash fr € P it holds f6n3=(E977 g .64n
AP e o ™) BA(EP e 2o §P)C  where (A, B C)e
e XxY =X is determined by f€ANB N C . We eqsily
verify that 6 mediates an isomorphism between N ,ng
NB | LD,

Theorem 3. Let N'= (P, &, %, )  bve a net, Then,
for each (}E’m? (NM)= (S, 4 ) , the conditions
1) XAV O V(iX,Y)e Ex Y ,
(2) card (XA Y)=1 " ’
B) XAnZ+g V(X,Z)eX <X ,
(4) card (XnZ)=1 '

are equivalent to

(1°) (o, &)= 0 V(a,&)e S»x S ,
(2°) card @w(a,&)=1 "
(3°) for each (#, c)e S x @ (S xS ) there exists an
aed such that ¢ € w (a, &),

€4°) for each (& e)€ S > (1t (S > S) there exists e-

)

xactly one &€ S such that ¢ € (« (a,£) , respectively.
The proof is obvious and may be omitted. = Denote by (39
and (4°) respectively the analogon of (3) and (4) respective-
1y for Y, X instead of &, X . If (2) holds then
(S, (w) is actually a groupoid, whereas if (2),(4) and (4"
are valid thén (S, ) is actually a quasigroup.
Definition 3. Let N = (P, &, Y, X)) be a net.
Let o X A4  denote that the points a,.£~ 1lie on the sa-
me X -line, and similerly for % or X instead of ¥ .
By a pegtangle in A’ we shall mean any quadruple a, 4&; e, d
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of points such that @ Y b, cY d, X, a Xd ; denota-
tion: 7l (a &re & ). Further we introduce the following
closure conditions:
(1) Rlabed), Ri@'b'c’d), b=br,a’Zec,adc mrd X d,
(R) Rlabed) Rb/c'daXa , bXpcXe' =>aXd,
(B,) Rlabed) R@b'd)a'Yc,ala, b2 YR d R,
(Bz)n(abcd)’ﬁ(a’b’c’d’)’ bxd;a, xa,/,»&x,fr;c xc,ﬂdzd;
’ ’ ’ 4
(B,m(ae«ad),aem'fr’cd'bawzc:@x‘%“zﬁf"x" =X,
and
W R abed), Rabed ) a=c,aXa, bXb e Xe'mydZd".
T R@bed), R@pbed),c=claXa, bl =>dXd’ .

Iheorem 4, Let N 'w (P, &, Y,¥) be a net satis-
£ying (2),(3) and (3"). Then(T)=y(RI=>((B,)& (B, ))=p(B;)=>(H)
for 4 = 4, 2, 3.

The proof can be given similarly to that presented in [2],
PP.397=402,

Theorem 5. Let N = (P, ¥ ,%Y, ) be a net such
that there is a G: =g‘f"l.$ (N) = (S, ) with the fol-
lowing properties: G isa groupoid and there exist elements
X,, U € S such that (U (X, %)= (X, y,) for all
* € S . Then (T)]a"alsg—"(x’) implies the commu-

e e’e gy,
tivity of a4 o If especially X, is a left unity for G

and if (T) lw,a’e §-1 rs,) holds then the associativity

of (u, follows.
proof. Let us identify N with 7 (G) xx) 4p g

xx) The subscript by 7?1  can be omitted.

- o e o o o
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natural way. Further apply the first restriction of (T) in~
troduced above £or @ =(X,,4),&°= (X, X ), (X, %, ) C'= (%, %)
Such an application is possible because of @ Xe’ and
o' ¥ c. It follows (%, my) X (4, X ), i.e., @(XY)s
= (a.(y,.x). Now investigate the second part and apply the
second restriction of (T) for @ = (X,,4 ), ' = (\x.,i),
e =(x,n), ¢’=(x,4) vwhere a ¢’ and @’ X ¢
is assumed. Then (X, 4Z ) X (z, '7 ) , dee. (a,(\X,ﬂ})e
= (u,(z, 47, ). But by our assumptions, a4 X ¢’ , and this
is equivalent with « (X, @)= w(2,y)=>gy = @« (Z,Y%).
Similarly @' & e =@ (%, ) = et (X, Yy )= = @ (X, Y).
Thus (X, w@,yl= @(z, «wix,y)) and therefore
(u(\x,(u(fy)z N= (@ (x,Y),X),by the commutativity of . ,
valid by the first part of this proof. Q.E.D.

Theorem 6. Let N'= (P, &,Y, & ) be a net such
that some g’f,"t,f (N)= (S, @) is a groupoid having a unity

0 . Then (B1) Ja,’,c ¢ (0 and (B-y),&',a’e f-f(o)

1mpLY o (i @ (X, @ lag, X M= (4 (¢ (Y, @ (2,94.0), X ), Vix,y, z€5.

The proof is gsimilar to the proof in [2], pp.413-415,
Theorem 7. Let W= (P, & %, X ) be a net satis-
fying (2). Then the following two conditions are equivalent:
(5) 3(X,,¥% )€ ¥ x Y such that card (X,n Z )=cardOyn Z)
for all Z e X,
(6) 3¢,7m, ¢ such that there is an € € &  commuting
with all elements of S with regard to

(N) = (5, ).
gm,i A >
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Proof. Let (5) hold. Choose §,7, § in such a man-
ner that §X,=7 % (=: €) and that
EUXER|XANAZ+IN=pUYeY [ Xpn YAZ + 0F)

for all Z € &, Then the corresponding @ satisfies
@ (€,x) = «(x-€) Yx€S.The other implication fol-
lows by reversing the preceding investigation. Q.E.D.
Remark. The interesting relation between multigroupoids
and their representing groupoids in the sense of [4],pp.4l-
42 may be utilized to obtain a new meaning of closure condi-
tions in nets over special groupoids. This will be conside-
red in another publication.
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