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Commentstiones Mathematicae Universitatis Carolinae 

9, 2 (1968) 

ON AN ANALOGICAL ITERATIVE METHOD WITH THE METHOD OF CHS 

TANGENT HYPERBOLAS 

M. &ALXSZ and G. GOLDNER , Cluj 

In this paper is given (by analogy with method of 

[1J) an iterative method using the difference quotients 

of the second order for the solving the operational equa­

tion 

(1) P(x) « 0 f 

where F is a continuous operator defined in Banaeh spa­

ce X with values in X. 

In [2] is given such a method, but the recoursive 

formula has more terms than the corresponding relation of 

this paper and in [21 is assumed existence of solution; 

we prove existence and uniqueness of the solution. 

In our paper we use some properties of the differen­

ce quotients and corresponding notations given in t31»£43, 

I5J.E61. 

The studied method is given by the formula 

(<n> m 0, 4, ... ) 

where 



Theorem* If in domain of definition of the operator 

P there are the points x 7 x 9 x0 so that: 

1° Ci> ^, Po exists (where Q *tP(x„ *_2 M** ) f 

in sphere S Cx„ , KQ ) exists P» C PCx', x " )JT'/ for 

any two points x', x " and Matff. lC .jMQU^M^i'B*0^ 

2 ° » P C x . . 1 ) ! - i n . 2 > «P<*„.,>!M-i , II P(x0 )ll * n, , 

(*lo4*% 'n-t >; 

3° In sphere S Cx„ y K0 ) take place the delimita­

tions 
I P t a ' ^ ^ ^ I A M , HP<.X',x",x";x,v>ll * Nj 

4° Q. 2^i 2 < 4 , where A ^ « B ^ M ^ 

C/n^-2,-1,0,4, 2 ,... ), ^.a < •£ 

C <rt * - 2, - 4, 0, 4, 2, ... ) then in sphere S Cx0 , KQ ) 

where 

ie>n-z , , 
/-*<> * " - — — — j r — j the equation (1) has a solu­

tion x** , which is unique in this sphere* The solution 

x* is the limit of the sequence ( X n ) given by (2) and 

the rapidity of convergence is given by the inequality 

<3) lx*-*V>» * /t,C(3La *±% ) * * £ * * , where 

i <i-»i ».a .v*3 7 " 7 • 

Remark ) . . The condition 4° i s verified it, for ex-
4 H 

ample, ^ 2 < if and p ^ - -6 4 , 
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Remark 2, We can easily veri fy (see C6]) that Xmdf 9 

X « «re in S Cx0 , x*0 ) • 

Remark 3> The theorem i s valid i f in the place of 

condition of the boundedness in norm of the difference quo­

tient of the third order, we assume that 

II PC* ' , * " , * " ) - PC*",*"', X I V)H ^ N « * ' - x l v » . 

Proof* From conditions of the theorem, it results 

evidently that x^ may be calculated by formula (2) and 

x^ is in S (*o 7 *-* ) ' 

We prove that the conditions 1° - 4° are verified 

too, for the points X , Xp, ̂  . 

1° From preceding considerations it results evident­

ly that this condition is verified. 

2° Let be the auxiliary operator 

F^c^^x^r^zi'pc^^^^.x^^ir^.pc^^r^r^ 

+ ?(*)+ n * c i - P(x^, *,».<, *^. t>nk*Pte*M>&-f 

. PCcx^-^^.^1 **v.a ) £„„ P C* ; ( * - « > 0 

with properties 

Applying the Newton's formula to the operator F0 in the 

point x -* x̂  , we obtain 
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3° The conditions are evidently sat isf ied . 

4° Evidently A £ Jv* G. & G hence 

By induction, i t i s easily to prove that x^ may be 

constructed by (2) , X^ € S ( x 0 , H.0 ) and the condi­

tions 1° - 4° of the theorem take place for any n • Also 

(5) W i - C-#W C*^ > * ^ , Ot -« 0, V - * > , 

(6) A> « CM. £ & )*A * ^ V ^ ) ? , 
* v # >*+><f 'H-2 'W--2 4H» G» 

*n-2 
where 8 P C ^ + 1 ) H * ^ ^ • 

From relations (5) and (6) we obtain 

whence 

••2 -"2 -2 -a 

4M 

^ *b < < t a ^ 2 >***** 

Hence the sequence obtained by (2) i s fundamental and has 

an limit x * • From (8) i t results that x * 6 SCxCt%n,0) 

and the delimitation (3) takes place* 

From (7) i t result* that 
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II PCx^Hfc (%^-н^ )*%?»•< n* • 

Hence, using the continuity of P we have 

P<x*) * 0 . 

For proving the uniqueness of the solution, le t be 

Sfe S C ^ , ^ p ) , £ * * * ana P(£) a 0 # 

Prom condition 1° i t results the existence of the 

I P Cx? X^ ) J where x ^ i s constructed by formu­

la (2)) and tt L P C $ , x^ )3~*II £ B . We have 

X-X^CPCS^x^r'CPCx^x^ 

whence ^ 

l l x - x ^ H * & n ^ ^ BCCfr^-H^)^?.*^^^ • 

Hence 

tJlvm> x_ » x 

and using the uniqueness of the limit 

X * X . 
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