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ON AN ANALOGICAL ITERATIVE METHOD WITH THE METHOD OF T3
TANGEN? HYPERBOLAS
M. BALASZ and G. GOLDNER , Cluj

In this paper is given (by analogy with method of
[1]) an iterative method using the difference quotients
of the second order for the solving the operational equa-
tion ‘
1) P(x) =0 ,
where P 1is a continuous operator defined in Banach spa-
ce X with values in X,

In [2] is given such a method, but the recoursive
formula has more terms than the corresponding relation of
this paper and in [2] is assumed existence of solution;
we prove existence and uniqueness of the sclution.

In our paper we use some propertiea of the differen-
ce quotients and corresponding notations given in [31,[41],
[5),161.

The studied method is given by the formula

(2) Xppqm K= 0 LI P (3, %oy s Koy ) Tany Pmag ) 7Pl
(n = 0,4, .00 )

where

‘:“ - f P(.X,,‘_, x“-.' )J“’



Theoremps If in domain of definition of the operator

P there are the points x ,, X , X, so that:
1° .0, N exists (where I = [P(x,, %_, 3371,

in sphere S(X,,%,) exists M= [ P(x’, x”)1°" for
any two points X ’, x”  and Max {0,075 N UGN HCI}=B<oo,
2°WPLx e, , IPCX V&, WP(xINE N, ,
("299’1_1 < n-ﬂ. );
3° 1In sphere S(X,,%,) take place the delimita-
tions
I Py X x" &M, IPCXyX"x" x") & N ;
#G,5n,<1, vhere h,=B My,
(m==-2,-1,0,1,2,-.), h,< +

(1+2h,‘_,)1(4+2h,,>>(4+81:1)
1-h, F*A-2h,,

2
and G,,‘,=

(m ==-2,-1,0,1,2,...) then in sphere S(x,, %, )

where

p, = —22=r th tion (1) h 1
° 1- <6, M0 e equation as a solu
tion x* » Which is unique in this sphere. The solution
x* is the limit of the sequence (X, ) given by (2) and

the rapidity of convergence is given by the inequality

1
(3) Hx*- x Il £nr,(6, h, y? ‘gt" , where
bt et +t , t,==d, b=, t =1 .

Remark 1. The condition 4° is verified if, for ex-
ample,h;_z<-%- and ~B—Nﬁ,—é4,
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Remark 2. We can easily verify (see (6)) that X »
x_, are in S(X,,%,)

Repark 3. The theorem is valid if in the place of
condition of the boundedness in norm of the difference quo=-
tient of the third order, we assume that

I PCXY, X7y x4y - P(x% %™ x™) Il & NIx'=x" 1.

Proof. From conditions of the theorem, it results
evidently that x, may be calculated by formula (2) and
x, is in S (Xo,% )+

We prove that the conditions 1° - 4° are verified’
too, for the  points X, X,, X, .

1° From preceding considerations it results evident-
ly that this condition is verified.

2° Let be the auxiliary operator
Fo(x)m X (1= PXy, Xy g2 Xnop ) s P(xm.q)Q]

s PUXY+ My [ I PUXy ) g 3 Xnoa ) e , Pty T

. P(“w, xm_.'? xn‘,-z ) ,:‘-4 P (-X7 (\X-Xmﬂ

with properties
o (Xp e B (X ) = Fy (Xnog) = Xnig 2

P (Xpy Xmog) = 0y B (X5 Xopog s Xneg I = 0 -

Applying the Newton's formula to the operator F, in the

point x = x

4 s We obtain

ﬁP(D‘,‘)HGG_’; %1%27- & (G'3h1)2Q0=’q1<020 ’
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3% The conditions are evidently satisfied.
4#° Bvidently b, £ Ay, G £ G, , hence
h—1 G;.' < 1.

By induction, it is easily to prove that x, may be
constructed by (2), X,, € S (Xx,, #,) and the condi~-

tions 1° - 4° of the theorem take place for any n . Also

(5) 72”1-4 = ('hm.a G‘m_a )"72,,‘ 9 (02, - 07 ",ovo ) ?

G’ ’3- (hﬂnl. G:'l- ),
6) M, = (h G _Yh < ———————-L”_z ’

where BP(Xp, O & %p,, -

From relations (5) and (6) we obtain
m
2 aﬁt*’
(1) Mmeq € [(G-_zh_z) ] s Mo

whence B m
.

n
Woan™ Xn 42, W 5arte™ Savnea V06 0 T,

meT

(8) 2E ¢t
. goz et & B%e E Nneha-1 < B, (Gofua) <
e LR 1 4'1;2 forq 4-»‘11 1~ (G’-z%ﬂ e

&1
< n, (G, d, 1t

Hence the sequence obtained by (2) is fundamental and has
an 1imit x* . From (8) it results that x*e S(x,, ~x,)
and the delimitation (3) takes place.

From (7) 1t results that
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l&q
I PCX e (6, 5 ) 1,4 No *

Hence, using the continuity of P we have

P(x*) =
For proving the uniqueness of the solution, let be
X €S, M) 5, X 4 x* and P(¥) =0,

From condition 1° it results the existence of the

~ -1
[P (X, % )] where x, is constructed by formu-

la (2)) and “[P(S?,x;)l‘qll € B . We have

S = Xy = EP(, % VTIPS, 5,03 (&=, )= =L P(K, %0 NP,

whence R
N &= syl & BN € BLCG, 403 8a% 5,
Hence
hf&’ﬂl‘*“ Xy <

and using the uniqueness of the limit

X =x*
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