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ON THE METHOD OF LEAST SQUARES OF FINDING EIGENVALUES OF
SOME SYMMETRIC OPERATORS
K. NAJZAR, Praha

Introduction

Among the numerical methods of finding the eigenvalues
of a symmetric operator the variational methods are very iﬁ—
portant. The purpose of this paper is to prove the convergen—-
ce of the method of least squares in the case of the symmet-
ric operators with a discrete spectrum.

The principle of this method is simple and can be out-

lined as follows. Let A be a symmetric operator with a
discrete spectrum and { A }:;0 be a set of eigenvalwes
of A ., Let (!}};:1 be a system with properties which are
described below. Let “ be a real number. Then + Qn
or - Q,, is the approximation to an eigenvalue of A ,

where

_ . A« - cea
2”..446&{!"-}::’ Haell

The approach to this problem is to be found in the
book of Michlin [1] on page 390, where the problem is stu-
died in the case in which the operator A is self-adjoint
with a discrete spectrum. The proof of the basic theorem on

the page 390 requires some remarks. For example:
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The validity of the identity

) “Au-&uﬂ= » NAw -l
‘9:”" Tl 9 T

is not obvious, because it is possible that for domains
2, , fDA2 the following relations hold:
%A o %2 and 9%# gAJ .

It is not obvious that the completeness and the A=-
completeness of the system {¥; § are sufficient condi~
tions for the convergence in the case that A is an un-
bounded operator.

In the section 1 we shall introduce the nct ions and
the terminology. Major results of this paper are summari-
zed in Theorem 2 in the section 2 and Theorem 3 in the sec-
tion 4. In conclusion we call the reader s attention to
the Ritz s method and point out some of the advantages of
the method of least squares in comparison with Ritz s met-
hod.

As to the mathematical formulation of the problem and
to some assumptions we shall use the book of Achiezer=Glas—-

mann [2] and Dunford=Schwartz [3].

l. In this section we collect several notations,no-~
tions and the terminology which will be used throughout the
paper.

The symbol H will be used for the separable Hilbert
space; I denotes the identity operator in H . Let H

be a subspace of H , then the symbol Pau will be used
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to denote the projection u on H;. The symbol ‘3: ® H;
will be used for the direct sum of the Hilbert spaces H;.

We shall be interested in operator A of the follo-
wing types:

I) A is a symmetric.operator in H , whose domain
D(A) is dense in H and range R(A) 1is a subset of H .

II) The spectrum 6 (A) of A 1is the closure of the
set of eigenvalues of A ,

Any operator having these properties we shall call PS-
operator (operator with a point spectrum). If the operatoz“
A 1s a PS-operator and if the set of its eigenvalues is a
set of the first category on the real axis, then we shall
call it DS-operator (operator with a discrete spectrum).

By £{¥,$", 4 we mean linear manifold generated

by the vectors ¥,,%,,..., %,

Remark. Let A be a PS-operator. Let A; (¢ =1,2,..)
be an enumeration of its distinct eigenvalues and let H
(4=41,2,...) be the closure of linear manifold generated
by the eigenvectors of A associated with the eigenvalue
9\,’- ., Then H may be broken into a direct sum of pairwise
orthogonal subspaces H; . If operator A is closed, then
the linear manifold generated by the eigenvalues of A as-
sociated with the eigenvalue A; 1is closed and A 1is
bounded and self-adjoint in H; .

The symbol A{, will be used for the restriction of A
to H; .

2, One of our tools will be the following important

Theoren 1,
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Theorem 1: Let H be broken into a direct sum of

Pairwise orthogonal subspaces ¥, :
H = % ® ¥, .

Let B be a linear closed operator on @B c H
satisfying the following conditions

I) medy= PRued,.

II) The subspaces ¥, and H © ¥; are invari-
ant under B .

If we dencte by B; the restriction of B to &,
then « € 95 if and only if

L4
2
“1’,"&“’6@5,‘; and 4%"&;@; I < c0

We have

o0
Bu =2 B« foreach w € 2y

Proof: Cf.Achiezer=Glasmann (2] on page 87.

The following lemma follows easily from Theorem l.

Lemma ]: Let A be a closed PS-operator, Let A -
(4 = 1,2,..) be an enumeration of its distinct eigenva-
lues and let H; (¢=1,2,...) be the closed linear mani-
fold generated by the eigenvectors of A associated with
the eigenvalue 2

Then «4 € 9, if and only if

S IA; u, I*<oo , where a,=F ac; A,=A/H;

v o1 v
oo o
and Au = ;?,, A; rigq A,
Remark: Lemma 1 is a consequence of Riesz-Lerch’s
Lemma,cf.[5].

In the following the Theorem 2 will be found useful.
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Theorem 2: Let A be a PS-operator. Let & be an
arbitrary real number. Then

NAw-pgewll
(7]

= Q ]
wed,

where g = onf IA;- | .

FET92y0
Broof: a) Firstly, we assume that A is closed PS=-
operator. Let A, (7 =1,2,...) be a restriction of &
to the subspace H,; « Then A; 1is uniquely given by the far-
malgn
Ak = A = 2,1, w €H;
and thus A; is the self-adjoint and bounded operator on H, .
By lemma 1
fweH: Fiaui-§ at 2
®A= u € ".=1 "A':u_y”=~§1 i "“»v [ < o0

4, = F, «4 1s the projection of u on H; ?

v

, Wwhere

and for each & € 3A

Vd
g_x.u. .

iasza v ot

o0

4 " 2 [ 4 2 4 e
I Aw -Ef:,a,""_‘z (2, -l ™ z L -gee)- -’"““»‘”zqf
ICEER PN TR g, o h®
LAY} v =

for each & € 9, -

It follows that
HAm - ceacll
e hah

G 2

To prove Theorem 1 it is sufficient to show that

. NAu — el o .
75 Tl = %
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Now

) HAMT‘““ 1Aw; ~ el - - (=4,2, 3,0
w‘ﬁﬂ;i Tl € X7 = 1A, -l 220,235

where

lue ﬂ.i )

is an eigenfunction corresponding to the eigenva=

and thus

: . HAw-ewl
(1) ..... “:rg,: i £ qQ -

b) Secondly, let A be a PS-operator. The minimal clo-
sed symmetric extension of A we denote by A (cf.[3], p.

1226). Then A is closed PS-operator and the spectra of the

operators A and A coincide.

Therefore by a)

NAw - e sl . AW - ceatl
—_— > f ——t =
«$3, Tal  2.9%, — T« %
and by (1) we have
n HAL - el = q
“wed, T

This completes the proof of the Theoren 2.

3. In this section we shall define A-complete system
and total-complete system.

Definition 1: Let there be given linearly independent
system {¥,3%, ¥ €9,,4=1,2,... . This systen
{¥; 1 will be said to be A-complete if for every « € 9,

and & > 0 there exists m (&, &) and «,e& £{V¥;17,,

such that
hAuw - A, Il < €

(cfoMichlin [11.)
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Definition 2: Let there be given linearly indepen-
dent system { ¥, 7, Hf’.c .?‘ , v=1,2,.. . This system{¥%}
will be said to be total-complete if {¥;§ is A o -comp-
lete for every real («, where A, = A-«l .

Remark: In case,in which 0 € €& (A) any comple-
te and A~complete system is total=-complete.

Lepma 2¢: Let A be & DS~operator. Then

I) There exists a real number ¢ , such that the
operator (A -« I>"" is bounded. We denote by A
the operator A - « 1.

II) Let there be given a linearly independent sys-—
tem {%, 3, ¥,€3,,4=1,2,... . Then {¥;} is total-
complete if and only if 4¥;? is A, -complete,where
A(“ is the operator defined in I.

Prodf : The spectrum of A 1is real and not dense on
the real axis. The statedent I follows from it. To prove
I1, let u be in ), and let @y be @ real number.
Then

(A= @, D Il £lAn-t 4 + (- eefus | At Il +
(2) Pl NA Al & 1Al
c* I =g HALT 1) mde - HA Il
Let us assume that the system {¥;§ 1is A

(lv
for every €& >0 there exists n and «, € £{(¥17,,

such that

~complete. Then

At = A, &, Il < &

By (2), we have

A - ,1 Y-t )l e A (-t ) < fo-e
It follows the necessity of II.
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The sufficiency follows easily from Definition 1 and
2.

Remark: If the operator A is PS-operator, then the
statement of Lemma 2 is true. If the relation w € 6CA)
holds, then the proof is analogous to the proof of Lemma 2.

In the next section we shall construct the approxima-
tion q, of the number q defined in Theorem 2 and pro-

ve the convergence q, to q .

4. The next theorem gives useful information on the
convergence of the method of least squares.

Theorem 3: Let A be a DS-operatore. Let {¥;? be a
total-complete systeme Let the sequence {g"; be defined
by formula

AU -l
In = LTEap, A

Then the sequence {2,,; is monotone decreasing and con-
verging to the number q , where ¢ =;.‘»;’,’f... 12, -l

Proof: 1) Firstly,sssume that q > O . It follows from
Theorem 2 that

(3).... llAu,-(a.u,uaq,-Mull for ueﬁA.

Now let &; Dbe an eigenfunction corresponding to the
eigenvalue 2A; such that l@;/l = 1 .

Select £, 0< € < 2 and select J such that
| 2-,- - (u«l<‘g + € . Since {¥;3 is total-complete,the=
Te exists for € a number n and «, € iV, 174

such that
(4) ..... (A « IV (e, -0l < € -
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By (3) we have I
(5)..... 1A -@I) (up-@ M2 2" Ik = 5

and so

(6) _,__,n(A-HI)u“ugu(A-MI)(u”—cf?.)ﬂ+l|(A-{aI)cf;.!lée+I.zaqul.
From (4) and (5) it follows
e ~cp; I £ —:—; <1
(7) so that €
bu =ttt =g b2 | HGgl-llaup-gl[ 21750 -
Therefore, by (6) and (7) we f£ind

4 Zg, & NA-@Eunl E;Iﬂé'(‘“ £ 215_*}:
fat, it -z -3

It follows immediately the statement.
B) Secondly, assume that q = O, Select € > 0 , The
set of eigenvalues of A 1is of the first category on the

real axis. It follows that there exists real number (q

such that
lw -yl < € and Qﬂ‘—;-‘i’fﬁ,...”*’"“« I>0 -
Then
9, .-.‘_':'/17‘\,;!".“!.2{-((,(,4-(«,-(4«4lé“i/‘r'?:mla_;—(wh lee- @11—-!@-(«.1“ € .

Consequently, from a) there follows:

for £ > 0 there exists n such that

. NAW - e, wll
£ min —_—t T 2 + € .
0 < “we LY ., A 2
Thus
. A= eacl : (A -eey 1) i+ | ey l- Nl
= murv T £ mn £
im PEY LY A el weX4¥; 17, , el

b re+rlu-a l&3e .
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Therefore &m Q = O and the proof is completed.
n-ygo
For the method of the determining of q, cf.Michlin
1.

5. Proceeding in an analogous manner,we may also estab~-
lish the convergence of the Ritz’s method for the finding
' eigenvalues of A . The valuable results are summarized in
detail in the book of Michlin [1]l. The rest of the paper is
devoted to reformulations and extensions of the results of
Michlin in case, in which DS-operator A 1is bounded below.

Theorem 4: Let A be a DS-operator which is bounded
below, Let A, < A, < A, ... be an enumeration of its
distinct eigenvalues increasing order of values and let «
be such a number that (t¢ < A, . Let there be given a to-

tal-complete system {%, 7 . Then
Au -peae, ) 5

L4’ al? = ST«

b) Denote
Q= (Au-gint, s ( )
n “‘x“, i —‘—‘&'—i‘—'nuu Ritz s method) .

The sequence {23 1s monotone decreasing and it converges
to (21 R

c) Q, satisfies the inequality

Q, ¢ q, , vhere q, 1is defined in Theorem 3.
Proof: a) By lemma 1 we have
2

Au-geanis), ;5,02 ~e0)idd PP - A4 5

e * ‘gqu‘? g. ul !

for each AL € ﬂA .
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Applying Theorem 3 to the operator A we obtain
. Au-~-eall
g Mumpul oy g

.

“wed, N ll
Since
NAw - ll. [ (Au -, &)l
(8)..... 2
el 2 a2
it follows that
int (AU =i, )

= - -
W i1> 1T

The statement ¢) follows immediately from (8).

The statement b) follows immediately from c¢) and from
Theorem 3.

For the following eigenvalues we have

Theorem 5: Let A be @& DS-operator which is bounded

below. Let A, < 7&2 < 40 be an enumeration of its

distinct eigenvalues increasing order of values., Let 1

be a real number such that 2,, £ @ = A___ -

Let there be given 8 total-complete system {¥;7.Ve
denote by HY the direct sum of the Hilbert spaces H, ,--

**t HM: m
HT =2 @ H;

R
veq

and by HY  the orthocomplenent of H' in H . Then

. Au-pea,un) 5
a) “‘;;’:fu. T % = Ameq T (Y

b) Denote

. (A~ @i, i)
= munv
L T b l®

Y34

Then the sequence { @, 3 is monotone decreasing and
converging to (A, . - )
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then @, < L

Proof: By lemma 3, we have

Au- st ), ;.gn (2 - ) “:'
Tl g -
ismed

and the proof of this Theorem is similar to that of Theo=

for « € H?

rem 4.
In conclusion we shall point out some of the advanta-

ges of using the method of least squares in comparison
. with the Ritz's method. The principal disadvantage of
Ritz s method lies in the necessity of evaluating eigen=-
functions associated with the eigenvalue A;, A, < (« .
To obtain the approximation of A, ,, we must know the
subspace H* = ;g @ H, (cf.Theorem 4). The Ritz’s
method gives only upper bound of the eigenvalue. In case
of the method of least squares we can obtain upper or lo-
wer bound of the eigenvalue for some particular choosing
of w (cf.Theorem 3).

The numerical aspects of the method of least squares
including the stability of appertaining processes were stu-
died. The results will be published elsewhere.
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