Commentationes Mathematicae Universitatis Caroline

Karel Wichterle
 Relations between the \mathfrak{N}-completeness and the paracompactness of closure spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 9 (1968), No. 4, 583--593
Persistent URL: http://dml.cz/dmlcz/105202

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae
9,4 (1968)

RELATIONS BETWEEN THE 20 -COMPLETENESS AND THE PARACOMPACTNESS OF CLOSURE SPACES
K. WICHTERLE, Praha

The main result in this paper is Theorem l (known for sequences and normal S-spaces ([2], the orem 9)). On the other hand, the assertion of this theorem (or $\partial \mathcal{L}$ completeness of $\langle P, u\rangle$) is sufficient for the paracompactness of $\langle P, \mu\rangle$ whenever u is a generalized order closure (Theorem 2).

Some definitions from [3] used in this paper. Let 20 be a (cofinal-closed) class of directed sets. A 20 -net is a net whose domain belongs to 20. A 20 -space is a closure space whose closure is determined (as in [1], 35 A .5) by some convergence relation \mathcal{C} such that $D \mathcal{C}$ consists of 20 -nets. \mathfrak{P} is 20 -complete iff \mathfrak{P} is a 20) -regular (i.e. any 20-net N converges to $N x$ whenever $f \circ N \rightarrow f x$ for each continuous function f) 20 -space and every \mathfrak{N}-net remarkable in \mathfrak{P} converges in \mathfrak{P}. \mathcal{H} denotes the class of all monotone ordered sets. The 20 -modification of a closure u is the coarsest 2) -closure finer than u.

Theorem 1. Let $\mathfrak{P}=\langle P, \mu\rangle$ be a paracompact space. Then every monot one net remarkable in \mathfrak{P} is convergent in \mathfrak{P}; equivalently, any monotone net ranging
in P does not converge in $\beta \mathcal{P}$ to any point of $|\beta \mathfrak{P}|-P$.

Proof. Let $\left\langle N_{0}\right.$, $\left.\geqq\right\rangle$ be a monotone net remarkable in \mathfrak{P} which does not converge in \mathfrak{P}. Then there exists a bijective ∂q^{r}-net N (i.e., $D N$ is regularly ordered) remarkable in \mathfrak{P} which does not converge in \mathfrak{P} (we can choose a regularly ordered cofinal subset E of $D N_{0}$ and a mapping n of $\alpha=\operatorname{cara} E$ into E so that $m \cong n \xi \Rightarrow N_{0} m \in P-N_{0} n[\xi]$, because N_{0} is not frequently constant and hence card ($E \cap N_{0}^{-1} N_{0} n[\S]<\alpha$; we can denote $\mathbf{D} N=n[\alpha]$).

Let us demote for each $n \in \omega_{0}$ and for each $f \in$ $\epsilon \mathcal{F P} \quad k_{f}=\lim f \circ N$ and $U_{f, n}=P-$ $-f^{-1}\left[k_{f}-\frac{1}{n}, k_{f}+\frac{1}{n}\right] .(\mathcal{F} \mathfrak{P}$ is the collection of all continuous functions of \mathcal{P} into I, I is the unit interval $[0,1 \rrbracket$ with the usual topology). Then $\mathcal{U}=$ $=\left\{U_{f, n} \mid f \in \mathcal{F} \mathfrak{P}, n \in \omega_{0}\right\} \quad$ is an open cover of \mathfrak{P} (whenever $x \in P$ then N does not converge to x in \mathcal{P} and hence $f x \neq k_{f}$ for some $f \in \mathcal{F} \mathfrak{P}, x \in$ $\in U_{f, n}$ for this f and for any $n>\frac{1}{\left|f x-k_{f}\right|}$). Thus there exists a locally finite partition of the unity subordinated to $U([1], 30 C .4)$, i.e. there exists $F C$ $c \mathcal{F} \mathcal{P}$ such that $\sum\{f \times 1 f \in F\}=1$ for each $x \in P$ and the locally finite cover $\left\{L_{f}=P-f^{-1}(0) \mid f \in F\right\}$ refines U - If $P \in F$ then there exists $G \in \mathcal{F} \mathcal{P}$ and $n \in \omega_{0}$ so that $L_{f} \subset U_{a, n}$, the net N is
eventually in $P-\mathbf{U}_{g, n}$, hence also in $P-L_{f}=$ $=f^{-1}(0)$, therefore $k_{f}=0$ and we can choose $c_{f} \epsilon$ $\epsilon D N$ such that $m \approx c_{f} \Rightarrow f N m=0$.

Let us construct (by induction) a family $M=$ $=\left\{M_{\S} \mid \xi \in \alpha=\operatorname{card} D N\right\}$ of points of the set $E \mathbb{N} \subset P$ and disjoint neighborhoods $V_{\mathcal{F}}$ of \mathbf{M}_{ξ} by the following way.

Let $\eta \in \propto$ and let the sets $V_{\xi} \subset P$ and $F_{\S}=\left\{f \in F \mid V_{\xi} \cap L_{f} \neq \varnothing\right\}$ be chosen for all $\S \in \eta$. Because $U\left\{F_{f} \mid \xi \in \eta\right\}$ is finite if $\propto=N_{0}$ and card $U\{F \mid \xi \in \eta\} \leq$ $\leqq \eta \cdot \psi_{0}<\alpha$ if $\propto>\psi_{0}$ the set $E\left\{c_{f} \mid f \in \backslash\left\{F_{\xi} \mid \xi \in \eta\right\}\right.$ is bounded in $D I$; let us denote d_{η} some its upper bound and $M_{\eta}=\mathbb{N} d_{\eta}$. Let us choose $g_{\eta} \in F$ so that $g_{\eta} M_{\eta} \neq 0$. Then $g_{\eta} \notin F_{\xi}$ and hence $L_{g_{\eta}} \cap V_{\xi}=$ $=\varnothing$ for each $\xi \in \eta$. $L_{g_{\eta}}$ is a neighborhood of M_{η} and therefore we can choose a neighborhood $\nabla_{\eta} \subset L_{g_{\eta}}$ of the point M_{η} so that the set $F_{\eta}=\left\{f \in F \mid V_{\eta} \cap L_{f} \neq \theta\right\}$ is finite.

We shall prove that $E M$ is discrete in \mathcal{P}.
Let $A \subset E M$. If $y \in E M$ then the point $y=M_{\mathcal{S}}$ has the neighborhood ∇_{ξ} and $\nabla_{\xi} \cap A \subset\left(M_{\xi}\right)$. Let us consider that $y \in \mu A-E M$. Let us denote $\beta=$ $=\min \{\gamma \in \alpha \cup(x) \mid y \in \mu(A \cap M[\gamma]\}$; obviously β is a limit ordinal number. Let us choose a net $x=\langle\{x j \mid j \epsilon$ $6 K\}, \leq>$ ranging in $B=\beta \cap M^{-1}[A]$ such that $M \cdot \mathcal{X}$ converges to y in \mathcal{P}. Let $f \in F$. If $E(f \cdot M \cdot x)=(0) \quad$ then $f y=0$. Let $f M x j \neq 0$. Then $f \in F_{x j}$. Because x is not frequently in γ
whenever $\gamma \in \beta$ (by definition of β) there exists $l \in K$ such that $i \geqq l \Rightarrow x i \geqq x j+1$. Therefore $i \leqq \ell \Rightarrow d_{x i} \triangleq d_{x j+1} \leqq c_{f} \Rightarrow f M \nsim i=$ $=f N d_{x i}=0$ for each $i \in K$; thus $f y=0$. But this is the contradiction with the assumption that F is a partition of the unity.

Because \mathfrak{P} is paracompact, there exists ([I], 30 c.10) a discrete family $\left\{W_{\xi} \mid \xi \in \propto\right\}$ of open sets so that $M_{\S} \in W_{\S}$ for each $\} \in \propto$.

Let us choose a set. S. $c \propto$ so that S and $\alpha-S$ are \leqq-cofinal in α, let us choose a function $f_{\xi} \in \mathscr{F} \mathscr{P}$ for each $\delta \in S$ so that $f_{\xi} u_{\xi}=$ $=1$ and $f_{\xi}\left[P-W_{\xi}\right]=(0)$, let us denote by f the sum of functions f_{f} over S. If $y \in P$ then there exists a neighborhood U of y such that $U \cap W_{\eta} \neq \varnothing$ for at most one $\eta \in S([1], 26 \mathrm{~A} .8)$. For this $\eta \quad \mathrm{f}=$ $=f_{\eta}$ on U and f is continuous in y. Thus f is continuous in \mathcal{P}.

The sets $d[S]$ an $d[\alpha-S]$ are cofinal in
D N, because card $d[S]=\operatorname{card} S=\propto=\operatorname{card} d[s-$ $-\propto]$; along with it $\mathrm{fNz}=0$ for each $x \in d[\propto-S]$ and $P N z=1$ for each $x \in d[S]$. Therefore P. N does not converge, N is not remarkable and it is the contradiction.

The second assertion of Theorem 1 is equivalent to the first one, because the net is remarkable in \mathcal{P} if and only if the one is convergent in $\beta \mathcal{P}$.

Corollary 1. Every metrizable spa ce (and every pseu-do-metrizable space) is γ_{l}-complete.

Corollary 2. The $\partial \ell$-modification of any paracompact space is \mathfrak{X}-complete.
proof. Let $\langle P, \mu\rangle$ be a paracompact space, let v be the \nVdash-modifi cation of u, let N be a \nVdash-net remarkable in $\langle P, v\rangle$. Because $\mathcal{F}\langle P, \mu\rangle \subset \mathcal{F}\langle P, v\rangle$, N is remarkable in $\langle P, \mu\rangle$, converges in $\langle P, \mu\rangle$ and hence converges in $\langle P, v\rangle$.

Theorem 2. Let u be a generalized order closure. Then $\langle P, \mu\rangle$ is γ^{\prime}-complete if and only if $\langle P, \mu\rangle$ is paracompact.

Proof. "If" is an immediate corollary of Theorem 1 , because every generalized order closure space is a \mathcal{H} space and obviously \mathcal{H}-regular ([4],3.11).

Let $\mathcal{P}=\langle P, \mu\rangle$ be not paracompact. Then there exists a well - ordered cover which is not uniformizable by [3], hence there exists a regularly ordered cover $U=\left\{U_{\S} \mid \xi \in \gamma\right\} \quad$ which is not uniformizable (a cofinal subcover of the preceding cover).

For each $x \in P$ let us denote $Q_{x}=E\{y \in P \mid$ $\mid \llbracket x, y \mathbb{Z} \cup \llbracket y, x \mathbb{\rrbracket} \subset U_{\xi}$ for some $\{\in \gamma\}$. For any $x \in P, y \in P$ either $Q_{x} \cap Q_{y}=\varnothing$ (iff $\mathbb{C} x$, $y \mathbb{I} \cup \mathbb{y}, x \mathbb{\rrbracket}$ is not contained in U_{f} for any $\xi \in \gamma$) or $Q_{x}=Q_{y}$. For any $x \in P \quad Q_{x}$ is interval-like (obviously) and open-closed in \mathcal{P}. (Let $x \in P$. Then ${ }^{u_{\xi}}$ is a neighborhood of x for some $\xi \in \gamma$ and thus there exists an interval-like neighborhood $\boldsymbol{w}_{x} \subset \mathbf{U}_{\xi}$
of the point x. If a point y belongs to W_{x}, then $\llbracket x, y \rrbracket \cup\left[y, x \rrbracket \subset W_{x} \subset U_{\xi}\right.$ and therefore the point y belongs to Q_{x}. Consequently, W_{x} is contained in Q_{x}, which proves that the set Q_{x} is open. Further, the set Q_{x} is closed as the intersection of the collectiom $\left\{P-Q_{z} \mid z \in P-Q_{x}\right\} \quad$ of the closed sets.

Therefore there exists $x \in P$ such that the open cover $U_{x}=\left\{U_{\xi} \cap Q_{x} \mid \xi \in \gamma\right\}$ of the subspace \mathbb{Q}_{x} of \mathfrak{P} is not uniformizable, let us choose such x (if $G_{a_{x}}$ belongs to a continuous uniformity $\mathcal{G}_{Q_{x}}$ for \mathbb{Q}_{x} and $\left\{G_{Q_{x}}[(y)] \mid y \in Q_{x}\right\}$ refines U_{x}, then $G=$ $=U\left\{G_{Q_{\alpha}} \mid x \in P\right\}$ belongs to a continuous uniformity $\left\{\boldsymbol{U}\left\{K_{Q_{x}} \mid x \in P\right\} \mid K_{Q_{x}} \in \mathcal{G}_{Q_{x}}\right\}$ for \mathfrak{P} and $\{G[(y)] \mid y \in P\} \quad$ refines $U\left\{U_{x} \mid x \in P\right\}$ which refines U).

Let $z \nrightarrow z_{0}$ be two different points of Q_{x}. Let us consider that the cover $\mathscr{V}=\left\{V_{\xi} \cap Q \mid \xi \in \gamma\right\}$ of the subspace \mathbb{Q} with $|\mathscr{2}|=\mathbb{Q}=Q_{\alpha} \cap \mathbb{\square} \boldsymbol{\sim} \rightarrow \mathbf{C}$ © \mathscr{Q}_{α} is not uniformizable; otherwise the cover $\left\{U_{\xi} \cap R \mid \xi \in\right.$ $\epsilon \gamma\}$ of $R=Q_{\alpha} \cap \mathbb{L} \longleftarrow, z_{o} \mathbb{L}$ is not uniformizable (easy) and the other proof is analogical.

Let us define $\nu y=\min \left\{\xi \in \gamma \mid y \in V_{\xi}\right\} \quad$ for each $y \in Q$. The set $\nu[Q]$ is cofinal in γ, because V is not uniformizable; and $\nu[] z, y \rrbracket]$ is not cofinal in γ for any $y \in Q$. Therefore we can construct (by induction) the family $N=\left\{N_{\xi} \mid \xi \in \gamma\right\}$ of
elements of Q and the family $x=\{x\} \mid \xi \in \gamma\}$ of elements of γ so that $N \xi \prec N \eta$ and $\nu t \leqq み \S<$ $<\nu N \eta$ whenever $\eta \in \gamma, \xi<\eta, z \prec t \underline{\jmath} N \xi$ ． Indeed，let $\eta \in \gamma$ and let $N \xi$ and $\neq \xi$ be chosen for each $\S \in \eta$ ；then $x[\eta]$ is not cofinal in γ and $N \eta$ can be chosen so that $\xi<\eta \Rightarrow x<\leqslant<$ $<\nu N \eta$ ，thus $N \eta \notin \mathbb{x}, N_{\xi} J$ ，hence $N \xi<N \eta$ for each $\xi \in \eta$ ；seeing that $\nu[] z$ ， $N \eta \rrbracket]$ is not cofinal in γ ，we can choose $み \eta$ so that $t ふ N \eta \Rightarrow \nu t \leqslant x \eta$ ．For each $t \in Q \quad t \prec N_{\xi} \Rightarrow \nu t \leq x \xi \Longrightarrow t \in U_{x \xi} \Rightarrow t \in V_{x \xi}$ ， hence the open cover $W=\left\{W_{\xi}=\rrbracket z, N \xi \mathbb{L} \mid \xi \in \gamma\right\}$ of the space 2 refines \mathcal{V} and therefore \mathscr{W} is not uniformizable．

Obviously，the net 〈 N, \leqq does not converge in $\mathfrak{2}$ and，consequently，in \mathfrak{P} ，we shall prove that $\langle N, \leqq$ is remarkable in \mathfrak{P} ．Let f be a function on P ranging in $[0,1 \rrbracket$ such that the net $\langle f \circ N, \leqq\rangle$ does not converge in I ．Then there exist sets B_{0} and C_{0} separated in I so that $f \circ N$ is frequently in both B_{0} and C_{0} ．Let us denote $B=Q \cap f^{-1}\left[B_{0}\right], C=$ $=Q \cap f^{-1}\left[\mathcal{C}_{0}\right]$ ．We can choose on increasing mapping h on γ into γ（by induction）so that $N h \eta \in B$ if $\eta=0$ or η is a limit ordinal or $N h \eta-1 \in C$ and $N h \eta \in C$ if $N h \eta-1 \in B$ ，because $h[\eta]$ is not cofinal in γ for any $\eta \in \gamma$ and N is fre－ quently in both B and C ．

Let us denote $m_{t}=\min \{\xi \in \gamma \mid t \stackrel{2}{=} N h\{ \}$ and $\rho t=h\left(m_{t}+1\right)$ for each $t \in Q$. Then $t \in Q \Longrightarrow$ $\Rightarrow t \leqq N h m_{t} \preccurlyeq N \varphi t \Rightarrow W_{\varphi t} \quad$ is a neighborhood of t. There exists a set $R \subset Q$ and a point y so that $y \in u R-U\left\{W_{\varphi t} \mid t \in R\right\} \quad([1], 24$ E. $4 \& 24$ E.2). Let us denote $S=\left\{N \neq \xi \mid \xi \leqq m_{t}\right.$ for some $\left.t \in R\right\}$. Seeing that for each $t \in R \quad t \geqq N h m_{t} \prec y$ and N h $m_{t} \in S, y$ belongs to us . For each $r \in S$ there exists $t \in R$ so that $h^{-1} N^{-1} r \leqq m_{t}$, for this $t r \geqq N h m_{t}, \varphi r \leqq \varphi N h m_{t}=\varphi t \quad$ and $r=N h m_{r} \prec N h\left(m_{r}+1\right) \preccurlyeq N \varrho t \geqq y$; therefore y ϵ $\epsilon u B$ and $y \in u C$, the function f is not continuous and the net N is remarkable in \mathfrak{P}.

Theorem 3. Let 20 be a cofinal-closed class of diretted sets. Let \mathcal{J} be the cartesian product of a family $\left\{\mathscr{S}_{a} \mid a \in A\right\}$ of closure spaces. Every $2 \cap$-net remarkable in \mathfrak{P} converges in \mathfrak{P} if and only if every $2 \mathcal{O}$-net remarkable in $\mathscr{S}_{\mathfrak{a}}$ converges in \mathfrak{A} for each a $\in A$. Consequently, \mathcal{P} is \mathcal{O}-complete if and only if \mathfrak{P} is a 2) -space and \mathfrak{A} is 20 -complete for each a $\in A$.
proof. Let N be a 20 -net ranging in $|\mathcal{P}|$ which does not converge in \mathcal{P}. Then $\prod_{a} \circ N$ does not converge in \mathcal{S}_{a} for some $a \in A$. For such a the 20 -net $\Pi_{a} \circ N$ is not remarkable in \mathcal{P}_{a} by assumption, $f \circ \Pi_{a} \circ$ - N does not converge in I for some $f \in \mathcal{F} \mathcal{P}_{R}$, hence N is not remarkable in \mathcal{P}.

On the other hand, let $a \in A$ and let N be remarkable in \mathcal{P}_{a}. Let $x \in|\mathcal{P}|$, let a mapping ψ on $\mathcal{P}_{\mathfrak{a}}$ - 590 -
into \mathcal{B} be defined so that $\pi_{a} \psi y=y \quad$ and $\pi_{b} \psi y=\pi_{b} \psi x$ for each b $\in A-(a)$. If f is a continuous function on $\mathfrak{P}, \mathbf{P} \psi$ is contimous on \mathcal{P}_{a} and $f \psi \mathbb{N}$ converges; hence ψN is remarkable in \mathfrak{P} and converges in \mathfrak{P} by assumption. Let z be its limit, then $N=\pi_{a} \psi N$ converges to $\pi_{a} z$. Example. If \mathfrak{P} is the (naturally) ordered set of real numbers endowed with the closure of the right approxximation, then the uniformizable space $\mathfrak{P} \times \mathfrak{P}$ is not normal ([1],30c.14) and $\mathfrak{P} \times \mathfrak{P}$ is \mathfrak{H}-complete. Indeed, \mathfrak{P} is \mathscr{H}-complete by Corollary 2 (or by an easy direct proof) and $\mathcal{P} \times \mathcal{P}$ is a s-space as the product of two S-spaces.

Theorem 4. Let 20 be a (cofinal-closed) class of directed sets, let α be a cardinal number. Then the following conditions are equivalent:
(a) The sum of any family $\left\{\mathcal{S}_{a} \mid a \in A\right\}$ of 20complete spaces (resp. such that $\operatorname{card} A<\infty$) is 20complete.
(b) Every discrete closure space \mathbb{Q} (resp. such that card $|2|<\alpha$) is 20-complete.
(c) There exists no proper ultrafilter on any set A (resp. such that card $A<\propto$) which has a base order-isomorphic to some element of 20 .

In particular, the sum of 20 -complete spaces is
20 -complete whenever $20 \subset み 2$.
Proof. $(b) \Longrightarrow(a):$ Let N be remarkable 20 -net
in $\mathcal{P}=\sum\left\{\mathcal{P}_{a} \mid a \in A\right\}$. Let ψ be a mapping
on \mathcal{P} onto the discrete space \mathscr{Q} with $|\mathscr{Q}|=\mathbb{A}$ such that $\psi\left[\left|\mathcal{P}_{\mathcal{Z}}\right|\right]=(\boldsymbol{z})$ for each $z \in A$. If $f \in \mathcal{F} \mathscr{Q}$ then $f \circ \psi \in \mathscr{F} \mathfrak{P} \quad(\psi$ is continuous) and $f \cdot \psi \circ N$ converges in I. Thus $\psi \circ N$ is remarkable in \mathbb{Q}, converges to some z in \mathbb{Q} by (b), hence $\psi \circ N$ is eventually in (z) and N is eventually in $\mathcal{P}_{\mathcal{z}}$. The restriction of N on $\left|\mathcal{P}_{\mathcal{z}}\right|$ is remarkable in \mathcal{P}_{z}, hence converges in \mathcal{P} and N converges to the same point in $\mathfrak{P} .(a) \Rightarrow(b)$ is trivial. $(c) \Longrightarrow(b):$ Let $\langle N\}$,$\rangle be a 20$-net remarkable in \mathscr{Q}, let us denote $C \mathcal{C}$ its limit in the ultrafilter space $\beta|\mathscr{Q}|=\beta \mathbb{Q}$, let us denote $\mathrm{Bm}=$ $=\{N m \mid m \prec n\}$ for each $m \in D N \circ \dot{E} B$ is a base of the ultrafilter $C H \quad(\langle N, \prec\rangle$ is eventually in each $U \in(\mathbb{})$, further $\langle E B, \supset\rangle$ and $\langle D N, 3\rangle \in 2 D$ are order-isomorphic. Therefore $C r$ is fixed and $\langle N, \mathfrak{}\rangle$ is convergent in \mathbb{Q}.
(b) \Longrightarrow (c): Let B be a base of an ultrafilter $C \mathcal{O}$ on A, let h be an order-isomorphism of $\langle E, \sigma\rangle \epsilon$ $\in 20$ onto $\langle B, \supset\rangle$. Let us choose $N b \in b$ for each $b \in B$. Then the 20 -net $\langle N \circ h, \sigma\rangle$ converges to $C \pi$ in the ultrafilter space β A, hence in $\beta \mathbb{Q}$ (where $|\mathbb{Q}|=A$ and \mathscr{Q} is discrete), thus $\langle N \circ h, \sigma\rangle$ is remarkable in \mathbb{Q} and convergent in $\mathbb{2}$ by (b). Therefore $C l$ is fixed.
References
[1] E. CECH: Topological Spaces. Praha 1965.
[2] V. KOUTNfK: On sequentially regular convergence spar ces.Czech.Math.J.17(92) (1967) ,232-247.
[3] J. MACK: Directed covers of paracompact spaces.Ca-nad.J.Math.19(1967),649-654.
[4] K. WICHPERLE: On 2D -convergence spaces.Czech. Math. J.18(93)(1968)(to appear, probably in Vol. 4), 569-588.
(Received June 27, 1968)

