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9,4 (1968)

A NOTE ON THE SOUSLIN OPERATIONS
Zden&k FROLIK, Prsha

The purpose of this paper is to give s simple and na-
tural proof of Theorem 1 below, and to introduce two "Souslin"-
like operati ons that seem to be important in the abstract theo-
ry of Souslin, "analytic", and "Borelian" sets: The details

will appear in "Correspondence Technique in Abstract Descrip-
tive Theory".

The coperation S; in Section 2 is a good substitute for
classical Souslin opersticn, the proofs of the main results
are really clear, and the deep content of the classical Sous-
1in operation is contained in S, . The most of the troubles
come when we want to prove that the last statement is true,
The operation S; in Section 3 is something between the clas-
sical operation and operation SQ .

For a comment concerning Paul Meyer ‘s approach see the
remark following Theorem 1, The notation of [1] is used through-
out, E.g. if M is s relation, then DM and EM stand, res-
pectively, for the domain and the range of M

l. Classical definition of Souslin sets.

Denote by S the set of all finite seqences in the
set N of natural numbers, and let Z be the set of all
infinite sequences in N ., If f and g are two relations
we write £ 4 g to indicate that £ is a restriction of g

Given a collection of sets 7 , by a Souslin- 7 set,
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or a Souslin get derived from 71 , ismeant a set of the
form
YM = UiNiMs|r < 6316 € 2 ]

for some M : S — M, The collection of all Souslin- M
sets is denoted by (M) . In this classical definition
we take mappings M from a certain ordered set into 7 .
In this note we work with M’s from collections of sets in-
to M .

Definition 1, Let J3 and 7 be collections of sets.
A Souslin family over 3 in 7 1is a single valued relatiom
M with DM = B , end EM ¢ 7 , The Souslin set of M
oy St gy . USAIMBIxeBER ] IXE UDMT -

The collection of all ¥M with M in 7 oer J3 ,
is denoted by ‘:f,a (m) . The asssociated relation with a
Souslin family M is the relation il consisting of all
{x,y > such that x € UDM, amd 4 &€ MB for each
Bef with xe B. The associsted fragmentation is the
family {x — N{MBIXxec BeBIIXeUDM} , The collec-
tion of 811 M with the associated fragmentation disjoin
(equivalently, when the associated relation is a fibration)
‘is denoted by ?: (M) , Sometimes the collections
»?f; (M) of all (x)with ¥ singlevalued, and ‘.-’f;’d(M)
of all (x) with ¥ single-valued an injective are important,

For each s in S put

>s = E{Fls < 6, 6€ P

Clearly {Z s} 4is an open base for the topology of coordina-
te convergence in 32 , if N is endowed with the discrete

topology. The relation { s — Zsi is one~to=-one, and clear-
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lyif M:S—>77M end M’ ; E{ s {— 71 such that Me =
= MZs , then YM = ¥M’ where < M is defined by
the classical definition, and & M’ is define d by Defini-
tim 1, Thus ff"t, ¥*, amd Y»9%  carries over to the clas-
sical case, and we can farmulate the main property of the
Souslin operation over 1Zs} .

Theorem ]. Let 7 be a collection of sets, and let

® € M. Then

(a) SLgom) = Sm

(0) L my = g%cmy

(c) I (g2(m) = $oom) 5

(@) Pra(ge2m) = P m) .

Remark. The classical proof is quite complicated, for
(a) see [4),5 36, for (b) see [5]. A nice proof of {a) was gi-
ver in [3]); P. Meyer used ingeniouely the proJjection techni-
que that had been already developed for analytic sets. It
should be remarked that the Meyer ‘s method does not apprly to
the other gets.

Given o collection 77 of sets we denote by w72 the
set of all finite intersections of sets in 72 ., It is easy

to gsee that

Yom) = 37(64 m)
for each 7. containing ¢ , and similarly for :f’l’, g,
and Y*®% 4hich shows that if is enough to prove Theorem 1

for multiplicative 72 . Inieed, if
X =M with Ms= N{M(5,2)| £=0,7,...,m(H)2 ,

we define a mapping & of 2  into 2 as follows: if

E={6n)Im e N3, then
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g(6)= 6(0),0,0,0,-,0, 6(1+4,0,0.,0, 6(2)+1,... ,
e
n{6,3)-times m (6;)-times

end then define M”: S —> 77 for sectione of (&)’ &
in the natural way, and O otherwise, (This is the only
reason for assuming @ & 72 1in Theorem 1.) The conclusion
follows from theorems 3,4 and 5.

Remark. It would be interesting to know for which

collections of sets J3  Theorem 1 is true.

2. Operati nsa .

Definition 1. let Q be a topological space, and let
M be a collection of sets. An S, -set derived from 72
is a set of the form ‘:;5 M where J3 1is a countstle opem
covering of Q, and M isin 72 over /3 . The set of
all S, -sets derived from 7, over Q is dended by S, mn).
Thus Sa (M) = U-(% (m)| B is a countsble cove-
ring of Q3.
Similarly we define S (), S5 (m) , ema Si% (M) .

Proposition 1, Let 772 be a collection of sets with
8 s m and let Q, and Q, be two topological spaces.
Then:

(a) s"z (m) c Sa4 om)
if either there exists a continucus mapping of Q, onto Qz.
o if Q‘z s a closed subspace of Q_, .

() & om) = S5 ()
is true far « =d,4,sd , 1f either there exists a one-to-
one continuous mapping of Q, onte Q , or Q, is & closed

subspace of @, -
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Remark. The assumption @ € 7 is needed for the
case when Q, s a subspace of Q, -

Definition 2. Given a space Q we denote by QH° the
space M{G | me N2 , and we denote by #,Q the space
S{Qime N3 .

Theorem 2. Let 72 be a collection of sets. If there
exists a continuous mapping of Q onto #,Q then S m)
is clesed under countable unions. If there exis ts a continu-
ous mepping of Q onto Qﬁ" then Sa (M) 1is closed un~
der countable intersections, and

Sg (Sg (MmN = Sg.(m) .
The same is true for S: .

Sketch of the proof of the last assertion. Assume that
M:g — %‘”“ where & 18 a countsble cover of Q .
To prove that ‘aox Me S, m) it is enough to show that
9& Me SQ1 (m) where &, = @ x Q¥ . For each L 1n
& we can choose M _:5B_ —> 7 such that /3 is a
countable covering of Q , end ‘:PQLM = ML . Foar each
L in & ,and B in J3_ denote by B the set

E{<x,y>lxel , ny 4y ep3
where pr_ is the rojection onto the L-th coordinate space
of Qx’ . Consider the open cover B’ of Q’ consisting of
all B _, Lef, Be 75’_ ,and define M’: B’ — 77 by
setting

MB =MB for LeL, Bed -
It is easy to see that C&M = %, M,

Fa the case of Y% and <*%  the same proof gives
the follawing
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Theorem 3. Let 72 be a collection of sets, Q be a
space, If there exists a one-to-one continuous mepping of
Q onto 0,7" then S: cm) is clos ed under count-
able intersections, and

sfestomn = gt omy .
The same is true for Sa""‘ .

Remark. If @ = CH,R)"’ then the assumptions of
Theorems 2 and 3 are fulfilled. The classical case of Q =
= 2 is obtained when taking = singleton for R .

The proof of Theorem 1 is now concluded by the follo-
wing

Theorem 4. If 70 is multiplicative then (772)=S5.(77),
A= 3 (M), $4(m) = $2 (m) , =nd P m) = 2% om) .

Proof. Clearly the inclusions C hold. To get the in-

clusions O e mst prove that any set

X = ¢M
over an open case 73 can be expressed as
X =¢ M

over {353 . Thia is obvious if {S 53 refines J3 . Ar-
range /3 in a sequence {U, 7 , and for any & of length
k consider the set N° of all n such that U > Zs ,
end put M’Ss = N{MU,_Im € N"7 where N" =N’ if
the cerdinel of N° is at most n , snd N" is the n-th
section of N’ otherwise., If {3s ? does not refine J3
then one finds a homeomorphism h o = onto 5  such
that L 73 ] is refined by { =s# . For a more intui-

tive approach to this proof see Section 3.
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3. Operation S.° .

In the classical case all Souslin sets are defined o-
ver s distinguished fixed open base for the space X ., In
this section we study Souslin sets of certain Souslin fami-
lies ever open bases of the spacej in the case of second
comtable spaces we get that these Souslin sets can be de-
fined by bases contained in any given open base.

Definition 2. An S* -femily in 72 over a space Q

is a Souslin family M in 77 over an open base J3 for
Q such that

N{MBIXeBeB] = N{MB|Be B, 3

for each x in Q , and each local base B, ¢ B ot x.
The Souslin sets of S* -families in 772 over Q form a
set S; () . In the natural way the sets S:d(ﬂt) ,
S‘;” (m) , and 5;'“"(7)2) are defined.

Evidently the restriction M’ of an S* -family M in
M toabase B c DM 1is an S* -family over Q and
YM = ¥M’ .,

Theorem 5. Let Q be a second countable space and
let M be a collection af sets. If J3 1s sny countable
base for Q , then any element of 5: (71) is of the
form & M , where M is an S*-family in 772 over Q
such that DM c 73 .

The proof follows immediately from the following

Lemmg, Let 73 and & be two countable bases for a
space Q , Let /), be the set of all B which are con-
tained in some element of & . There exists s mapping
% : B, —» & such that, for each x and each local
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bese 3, c B, st x , the set of all B ,B € B, ,1is
a local base at x .
Proof. Arrange 3, in one-to-one sequence 1B ¢,
and arrange & in a sequence {me « For each n , let
@B beaset LoB, in £ with the following pro-
perty: consider the set N’ of 811 k with L,> B, the-
re exists the greatest £ & m such that L is contained
in the intersection of the first £ elements of {L Ik €N},
we want this £  to be meximel for all possible L in £
with LoB, .
Theorem 6. If 772 is multiplicative then
g (M) = S% (M) , end sinilarly for 9% $* ena F%,
Proof. The inclusion ¢  holds because every < M
can be written as < M° with M’ -order-preserving, hence
an S* «family. At this point the multiplicativity is cru-
eial. The inverse inclusion follows from the fact that if
X = YM with M an S*-family over a base J3 C
c E{Ss ], then there existe an S* -family M° over{Ss?
with EM = EM’ and $M = $M’ ; the last statement fol-
lows from special order-properties of S .

Theorem 7. Let Q@ be a space, and let 77 be the
collection of sll closed sets in a space P ., The following
conditions (a) and (b) on a set Xc P are equivalent; and
they are implied by condition (c¢). If Q is second count-
able then all the conditions are equivalent,

ta) X e S m)

(b) there exists a closed-graph-correspondence f of
Q into P with X = Ef ;
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() X e 5 om) .

Proof. I. Condition (c) implies condition (a) becau-
se if X € S¥(7) , then X= ¢ M with ¥ en
S-family over a countable open covering /3 of Q , and
given any open base & refining J3 we can define an
S* «family M’ as follows:

ML = N{MBILc B e B} .
Clearly

II, If Q is second-countable then any S;‘ -get is
an Sa -get without any assumption on M1 .

III. To prove that (a) and (b) are equivalent obser-
ve that the associated relation with an S* -family is clo-
sed (thus (a) implies (b)), and if £ c Q@ =~ P 1is clo~-
sed and J3 is any open base for Q then M: B —> M7 de-
fined by

MB = cffLB]

~
is any S¥*-family, and £ =M

4, Remark . For the further development it is con-
venient to introduce the correspondence technique. Instead
of collections M we consider paved spaces as introduced
by P, Meyer [3] . A paved space i8 a pair ( P, M >  whe-
re P is a set and 7 1is a collection of subsets of P
with 8 € M . An S-correspondence of a topological
space Q into (P, M > 1s a correspondence f: & —
- (P,Mm> such that the graph of f is associated
with an S-family in 770 over Q . Similarlv S™.-corres-

pondences are defined.
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One can define "Souslin-product” of correspondences
such that the proof of Theorem 2 is then a proof of the
assertion that the Souslin product of S-correspondences
is an S-correspondence. If we regard every topological spa-
ce as a paved space with the pavement consisting of all
closed sets, then we get that the Souslin product of upper
semi-continuous compact-valued correspondences (shortly:
usco-compact correspondences) is usco-compact, which gi-
ves the invariance of analytic spaces under the classical
Souslin coperation. One can define upper semi-continuity in
general setting and get the concept of analytic set im ab-
stract situation. The theory is developed in the pasper re-
ferred to in the introduction.
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