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Commentationes Mathematicae Universitatis Carolinae 

9,4 (1968) 

On E-GPACES 

Z. FROLfK, Prehi 

This i s a summary of author's paper "Separation theo

rem and applications to Borel sets*1 that wil l appear e l se 

where. The results were included in a series of the author's 

lectures at the University of Bari in the spring semester of 

1967-68 academic year. All spaces are assumed to be comple

tely regular ( i . e t separated and uniformizable)• The nota

tion of C13 wil l be used throughout• 

1. Denote by N the set and the discrete space of na~ 

tural numbers. The product space N i s denoted by 2. • 

The space Z i s known to be homomorphic to the space of 

al l irrational numbers on the real l ine . The spsce JE 

plays an important role in the classical theory* The method 

of correspondences introduced in C33 allows us to preserve 

the prominent role of 5E from the c lass ical separable 

descriptive theory in the separable theory in the class of 

a l l completely regular spaces* If Wl i s a collection of 

sets we denotes by J3 C Wl) the smallest collection fl o 

D 7X1 that i s closed under countable unions and countable 

intersections, and we define 2$^ Cfft) just replacing 

unions by d isjoint unions. For a space P denote by zero(P) 

the set of a l l zero-sets in P , and by cozero(P) the set of 



a l l cozero-sets in P • The Baire sets in P are the e-

lements of $b (zero(P)) | i t i s easy to show that 

J3 (zero(P)) « J3^(cozero(P)) . 

If TYl and 71 are collections of s e t s , we deno

te by I 711] n 171 2 the set of a l l H r> N with M in. 

W and N in 71 . It 7YI i s a collection of subsets 

of P ,. then compKW ) consists of the complements in 

P of elements of 7ft -

2 . An usco-compact correspondence of a space P in

to a space Q i s an upper semi-continuous correspondence 

(.many-valued mapping) with compact values, that means, the 

preimages of claed sets are closed , and the values are com

pact. If in addition the values at d ist inct points are d i s 

joint , then the correspondence i s called dusco-ccmpacto 

Usco-compact images of £. are called analytic spaces, 

dusco-compact images of Z are called Borelian spaces f 

see 132 9 Sections 2 and 3 . I t should be remarked that Bo

relian spaces are called descriptive Bcrel by C.A.Kogers C7J. 

The graph of an usco-compact correspondence into a 

separated space is closed. The Souslin sets in a space are 

defined to be images cf 2T under closed-graph correspon

dences. Thus every analytic subspace of a space P i s a 

Souslin set in P , and analytic spaces are just the abso

lute Souslin s e t s . 

The Borelian spaces are characterized as absolute 

([..closed 11 r\ [Baire ] ^ed<T 
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where && i s for disjoint countable union. In the case 

of metrizable spaces analytic spaces are precisely c lass i 

cal analytic s e t s , and Borelian spaces are precisely c las 

s i ca l separable absolute Borel seta . In this paper we in

troduce a wider generalization of c lass ical absolute Borel 

s e t s , the so called B-spaces. 

Definition 1* A correspondence of 2L into some

thing i s called a boxed correspondence i f the preimages of 

points are boxes in Z , i t e . product sets* A boxed usco-

compact correspondence is called busco-compact. Busco-com

pact images of Z are called B-epaces* 

Any d isjoint correspondence on 2. i s boxed, and hen

ce Borelian spaces are B-spaces* 

Theorem 1 . The class of a l l B-spaces contains a l l 

(compact)-^ s e t s , and i t i s closed under dusco-compact cor

respondences* The set of a l l B-epaces P c f t i s closed un

der countable intersections and countable d isjoint unions* 

It should be remarked that a 6"-compact space need 

not be Borelian (see [3J*Remark following Theorem 10), whe

reas every #-compact space i s a B-space by Theorem 1* 

3* Complete sequences* Let gu, -» {'M J be a sequen

ce of coverings of a space P *, A (U -Cauchy f i l t e r i s a 

f i l t e r Wl on P such that Hi n OH^ 4* 0 for a l l 

n • Finally, <a, i s complete i f Dei CM 1 * 0 

for each |U, -Cauchy f i l t e r on P * 

Theorem 2 . A space P i s analytic i f and only i* 

there exists a complete sequence of countable coverings 
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of ? • 

It should be remarked that spaces admitting a complete 

sequence of countable coverings were studied in 141 under 

the name B-spaces. Here the term B-space i s used in much mo

re restrict ive sense* 

l/eflnltion 2 . A B-structure on a space P i s a comple

te sequence ^ =• {%* J •-? countable coverings of P 

such that 

for any M^ in 1^1^ • A Borelian structure i s a B-struc-

ture such that the coverings are disjoint* 

Recall C31 that a space P i s Borelian i f and only i f 

there ex is ts a Borelian structure on P • In the same l ines : 

Theorem 3 . A space P i s a B-space i f and only if there 

ex i s t s a B-s true ture on P • 

.Remark. I t follows from Theorem 2 that the elements of 

the coverings of any B-s true ture are analytic* It can be pro

ved that a space P i s Borelian i f and only i f there ex is ts 

• complete sequence of countable coverings such that the ele

ments of the coverings are Baire sets in P • 

The external characterization of Borelian spaces descri

bed i n section 2 t i s proved by using the f i rs t Separation, 

Theorem. For B-spaces we need a much more complicated sepa

ration theorem which wi l l be described in the next sectiono 

4» Separation* Given a collection IK of s e t s , two s e t s 

2 and 7 are said to be 071 -separated, or separated in 

HI , i f there exist X̂  and T, in 171 with X c Xy , 
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Y c r1 f and X1 n \ » ^ . 

Lemma 1» le t W b e a f in i te ly additive and f ini te ly 

multiplicative collection of subsets of a set P • Assume 

that $* i s a f in i te collection of sets in P such that 

any two disjoint elements of 

L?l cs LcomfU CM)! 

are 1YI -separated. Then for any M 3 H ?", M e 1ft > 

there exis ts a family #2^ s {M p IFfi f J ranging in 

HI such that F c M p for each F in ^ t and 

H77L, c M . 

.E«.g«t i f P i s a f in i te collection of compact sets 

in 9 separated space, and U i s an open neighborhood of 

r\ T , then there exist open neighborhoods tL. of F f 

F e ? , with n < uF i F s 9j c a . 
Lemma 2» Let #2 be a f in i te ly additive and 6 -mul

t ipl icat ive collection of subsets of a set P r and le t 

? e. W . Assume that CL i s a countable collection 

of sets in P such that any two disjoint elements of LQLl n 

r\ C compl (Ttl) 1 are <#£ -separated. I f {MT [ F c CL 7 

$ f in i te J i s 8 family ranging in 1TI such that 

f l f c M j . for each f % then there exists a family 

i K J / l e f t j ranging in 1TI such that K 3 A for a l l 

A in CL , and 

/ K K A I A e y J c M r 

for each f i n i t e ? c 4 , 

I f P i s a space, and it CL i s a countable col 

lection of analytic sets in P , and i f Ht i s the set of 

a l l Baire sets in P f then the assumptions of Lemma 2 are 
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ful f i l led by the f irs t separation theorem (13] or 151)f and 

we get the following important 

Theorem 4« Let Q, be a countable collection of ana

lytic sets in a space P , and let 

•{ B^ I 9 c d ? f f ini te } 

be a family of Baire sets in P such that By => D P 

for each $* • Then there ex is ts a family { ZA 1 A e &i 

of Baire sets such that Z^ D A , and l1{2A M 6 P} c B r 

for each f > 

*>• The main results 

Definition. A space R i s called quasi-classical i f 

there ex i s t s an usco-compact correspondence of a separable 

metrizable space onto R • A space P i s said to be quasi-

c lass ical at infinity i f K- P i s quasi-classical for some, 

and then any, compact! ft cation of P o 

The class of a l l quasi-classical spaces is closed un

der usco-compact correspondences, and the class of a l l spa

ces quasi-clas3ical at infinity i s closed under proper map

pings in both d irections. For a metrizable space P i t i s 

equivalent: 1) P is separable; 2) P i s quasi-classical \ 

and 3) P i s quasi-classical at inf ini ty . 

Theorem 5. If P i s a B-space t and i f P c Q such 

that Q - P i s quasi-classical then 

( * ) P 6 ( C closed (Q)l o C Baire <Q) 3 V ^ • 

If P i s a B-space that i s quasi-classical at inf ini ty , 

then (.*-) i s true for any Q o _P • 
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The proof i s not easy, and requires Theorem 4 . 

Theorem 6. A metrizable space P i s a separable ab

solute Borel set i f and only i f P i s a B-space. 

For the clas3ical deacriptive theory we get the f o l 

lowing non-trivial results (easy corollaries): 

Theorem 7. I f f i s a busco-compact correspondence 

of 2 onto a metrizable space P f then P i s a sepa

rable absolute Borel sets* 

Theorem 8. Each of the foi l owing conditions i s neces-

aary and aufficient for a metrizable apace P to be a ae-

parable absolute Borel se t : 

(a) There ex i s t s a complete sequence of countable co

verings of P such that the elements of the coverings are 

analytic sub9pacea of P • 

(b) Condition (a) with di3joint coverings* 

(c) There exiets a B-etructure on P . 

(d) There exiets a Borelian structure on P -
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