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Comment at i one a Mathematicae ITniversltatis Carolinae 

10,1 (1969) 

A GENERALIZATION OF TYCHONOFF'$ THEOREM 

I* JUHXSZ, Budapest 

A well-known theorem of Alexander says that ordinary com

pactness of a space R is equivalent to the following pro

perty: 

R possesses an open subbase S such that may covering 

of R consisting of members of S has a finite subcovering. 

In Kelley's book [1] this fact is used to prove Tychonoff*s 

theorem. Using this method, however, one can arrive at a ratt-

her striking^generalization of Tychonoff'a product theorem 

for a certain "aubbase-modification" of almo8t all compact

ness properties. This also shows that if "Alexander's theorem 

holds" for one of theae compactneaa properties, then "Tycho

noff 's theorem holds" for it too. I wonder whether the con

verse of this last statement is true. 

In what follows, capital Greek letters: P, A , VI ,--• 

will denote open coverings of topological spacea, while small 

Greek letters: <f , X , ae , .. . will be used for deno

ting systems of open coverings. We shall write P -< A If 

r is a refinement of A , i.e. for each G 6 P there 

exists an L & A such that G c L • (T denotes the 

class of all topological spaces. 

Definition: A function K is called a compactness func

tion, iff it8 domain is T , and its values are pairs in 
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the form 
KCR) - C ^ CR), ae2CR)J (ReT) , 

where *d€^(R) and aft^CR) are systems of open cove

rings of R • (Sometimes we simply write K * C ^ , ^ J •) 

In what follows, we alwaya assume tljat, i f 1̂  i s a sub-

covering of P € 0ft- ( R ) , then I? e 3ft, CR ) , too. 

Definition: If K i s a compactness function, a space 

P, € !T i s called K-compact, i f f for any HJ e 96 C R) 

there ex is ts a f] e ^x C R ) such that £ <; f̂  • 

(A general compactness definition actually equivalent to 

the above one can be found in [2]„) 

Let R e (T and 

. ^ CR) ; the system of a l l open coverings of R ; 

of CR) ; the system of a l l open coverings P of R 

tor which | P I <: an- 9 where m i s an arbitrary (f inite or 

in f in i te ) cardinal number; 

A ( R) i the system of a l l locally f in i te (open) 

coverings of R ; 

/U* (R*) : the system of a l l pointwise f in i te cove

rings of R£ 

tfr(R} : the system of a l l star-f inite coverings of 

R (a covering T i s called s tar- f in i te , i f f any member of 

P meets only a f in i te number of membera of P . 

By means of these functions y, %n,i %>, tfT end <c-i> 

almost a l l of the usual compactness properties can be formu

lated: 

If C ~ C y o T** -- j then C-compactness i s ordi

nary compactness. 
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-* <U - C <£.. , T«. 3 C m .a*.) , then C ^ -

compactness i s m-compactness in the sense of C3J, p. 81. 

(Here m* is the smallest cardinal greater than m . ) 

* C - I X* , T„ 1 , tbencZ' 
compactness i s compactness in a given Interval of cardinal 

numbers, as i t was defined by Ju.M« Smirnov in £4J. 

If L =- IT, ^> M~LT7 p-1 andP-* LT> * } , 

respectively, then L- , M- , and P-compactness coincide 

with paracompactnesa, metacompactness (or weak paracompact-

ness), and strong paracompactness, respectively. 

If L ^ » C Xm, i X 1 , then L .̂*. -compactness 

i s m-paracompactness, see e.g. C6J. 

Even pseudoeompactness (we recall that a space R i s 

pseudocompact i f f any continuous real function on R i s 

bounded) can be defined this way, since i t i s well-known 

(see e.g« [5J, Th*ll) that R is pseudocompact, i f f any l o 

cally f in i te open covering of R has a f in i te subcovering, 

hence evidently pseudoeompactness coincides with L*-com

pactness, where 

Now we are able to define the subbase modification of a 

compactness property, that was mentioned in the introduction* 

Definition: Let K » t'dei , &6% 1 be an arbitrary 

compactness function. Then a space R i s called subbase K5-

compact, or briefly SK-compact, i f f R possesses an open 

subbase S such that for any [J1 e ^ C R ) with rj a S 

there ex is ts a £ e ie% (R ) such that Q < ^ -



Thus Alexander a theorem can be formulated as follows: 

C-compactness coincides with SC-compactness. 

As another example we can consider the compactness func

tion C • C 7T-) #a ] 9 which is completely uninteresting 

In itself, but for which SC3 -compactness coincides with the 

supercompactness property, Introduced by J* de Groot. 

Definition: The compactness function K =» f idei , &2 3 

will be called projective, iff the following condition is 

fulfilled: 

If R « x R ̂  is an arbitrary product of topolo-

gical spaces, then for each <x- e A , P € ae^ CR^ ) if 

and only if &£ ( P ) € ^ (R) , f i - 4, 2 ) ; he

re Tf^ denotes the canonical projection fQi R —> R^ 7 

and 
j£1(P) o { *tT'cG-> ; & € P J . 

Proposition 1: All the compactness functions defined a-

bove are projective* 

ffroofs This is obvious, if $e^ • T or ̂  - 9 ^ for 

some cardinal m • 

If set • A. , and P e A C R ^ ) , let x e R - ^ R^ 

be an arbitrary point of the product space R . Since P is 

locally finitei there exists such a neighborhood V00 of the 

point ^ ( ai ) , which only meets finitely many members of 

r . Then, however, &£* ( V * ) is a neighborhood of 

3T meeting finitely many elements of the covering ft^ C P ) 

only. This shows that $r ( P ) is locally finite, indeed* 

On the other hand, if /rj C P ) is locally finite, 

and U is such an open neighborhood of x € R , which only 

- 44 



.-A 
meets f in i te ly many members of tf^ C P ) , then JT̂  Ct l ) 

is a neighborhood of ^ CX ) > which has the same property 

with regard to P • Indeed, i f U O JT^ (&) - 0 for 

some G e P , then JT̂  C U ) O & - 0 obviously. 

The cases ae^ - <U> and -aê  -» T̂ can be handled 

by analogy* 

Proposition 2: Let K m L 36^ ,, ^ 3 be an arbitrary 

projective compactness function. Then any product of SK-comr 

pact spaces i s also SK-compact • 

Pyoof: I*t R - j * * A Roc , where R^ i s SK-com

pact for each oc e A » Thus for each <Jt 6 A there exists 

an open subbase S^ for R^ such that P e ae (R^ ) and 

C C S^ implies the existence of a covering £ £ 06^ Cf^,) ̂  

for which Q. < CJ" • 

It i s easy to see that the family S « i ^ «& ):Ge&cfCeA'} 

constitutes a subbase for the product space R • Using this sub-

base of R we shall show that R i s SK-compact. 

Indeed, le t P e 86,- CR ) be a covering with P C S # 
. 4 

Then any member G € P has the form Cr ** 3T^ C G^ ) for 
some oc € A and C&. * S^ 0 If oc € A , l e t 

^ -<%«%,»*£*«&> « PI > 
and 

?/e shall prove that there exists such an index occ e A 7 

for which 

49 O 

Assume, on the contrary, that T^ 4* R ^ for every 

<K 6 A . Then we can choose an element X^ € R \ "T-
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for each oc e A • Thus a point x e R can be defined such 

that fj^ Cx) -• X ^ for each oc € A . But then 

this point x cannot belong to any member of P , since 

•X e Sf^CG^) would imply /X^ € G^ c T ^ ? which 

i s a contradiction. Thus we can real ly find such an index 

OC € A , for which X = R v 

This means, however, that 

T -1< «^>s <* . e
 I M - < <^> 

i s a subcovering of P , since cfikc i s a covering of 
Roc . But Q e r implies Q e ae C R ) , hence 

cg/^ e 36^ ( R ^ ) ; because K is projective. But 

<^0
 C -Vx e 

holds, too, consequently there exists a covering Qe ^ ^ ^ ) ; 

for which 

5 < ^ - . • 
But then 

< ' 1 > -- < f *-K V- «: «- n, , 
and 

^ ' V r ; ) € ae2 fR) , 

because K i s projective, and this proves our proposition. 

Corollary 1; If K-compactness coincides with SK-com-

pactness, for some projective compactness function K , then 

any product of K-compact spaces i s also K-compact.(This can 

also be expressed this way: If Alexander's theorem holds for 

such a K , then Tychonoff 's theorem holds for K , too.) 

Corollary 2: Any product of supercompact spaces i s super-

compact., 



Problem: For what compactness functions (or properties) 

are Alexander's theorem and Tychonoff's theorem equivalent? 
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