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Commentationes Mathematicae Universitatis Carolinae 

10 f 1 (1969) 

ALMOST OPTIMAL APPROXIMATIONS OP COMPACT SETS IN HILBERT 

SPACE 

Jaroslav MILOTA, Praha 

1. Let H denote m Hilbert space which i s sup­

posed to be separable. Let T : H —• H be a completely 

continuous operator and l e t <R,(T) -=. TCH) denote i t s 

range. Then the operator A » C T * T j i ( T* i s the ad­

joint operator to T ) i s a completely continous posi­

t ive operator. Therefore A has the non-increasing se­

quence ( X ) of positive eigenvalues and there exists 

the orthonormal sequence (in H ) of i t s eigenfunctions 

( e^ ) (See i 13,pp. 189-191). If we denote U<^. - T f 

for fy ss Af then U i s a unitary operator and 

T » U.A , Setting Jv^ =-. l l € n 9 (Jh ) i s an ortho-

normal sequence in H and 

(1.1) Tf - J E Л^Cf.-ą.JдH. 

and 

(1.2) T * ł - % Л A C-í,M.л)-em 
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2 . If SC'O i s the uni t sphere in H then 

M * TCSC4)) i s a compact s e t . For the sequence Cg^)c H 

we denote the error of the best approximation of M by 

We further denote by @^ ( M ) the value of the error of 

the best n-dimensional approximation of M ? i*e . 

(2.2) P>CM)* *"* f U C M , ^ . . . , ^ ) • 

Theorem lf Let T : H -* H be a completely continoua 

operator in the form (1.1) and M & T(SCA) ) . Then 

(2.3) firyCM)mf^miHif...%4%^)m X^1 . 

Proof. 1. We have 

and . on the other hand.for -f ** «€! . i t i s 

junt an-Aicc4A^iu I T ^ I . ^ * 
Hence the r ight hand side equality i s proved. 

such tha t ^ 2 l a ^ ^ » . I ? V « 4 a - ^ ^ t , ^ A 4 t ^ * > % ? " 0 

fo r i x A%...^ tn, . Then 
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and, by i t , 

From tlxis the left hand side equality foiiovrs. 

The asymptotic behaviour of the minimal error ^ ( M ) 

was examined in 121 for some classes of integral operators 

in L2 . 

Theorem 2. If M i s a compact set and (cf^ ) i s 

a complete sequence in H then 

and i f (2.4) holds and {J m, M i s a dense set in H 

then (OP ) i s a complete sequence. 

Proof. We denote by L ( $ ) the linear hull of a 

sequence (%,,) • 

1. Let (Cf^ ) be a complete sequence, i . e . L ( $ ) » H 

( M denotes the closure of M ) and let P* be 

the projection onto L ( c ^ , . . . , C^ ) . Then 

(2.5) <&m, | a - P* 9. fl « ^ 

for any c^ e M . As the functions II J. - v ^ II are 

continuous on M , there exists the sequence (9^) c M 
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such that 

&CM}9f,...,9.w>. - * » - # « . * « . ' ^ - V - • 

We suppose 

(2.6) ft*<M* <%,.-.,%*) * <* > 0 

for a i l tfi . By the compactness of M ,there exist 

(*b*l and rj.* € M such that J*™*^ 9 ^ - £ * * No*» 

from (2.5) i t follows that there exists Jk>0 such that 

for any /fe -fc ^ 0 

•**- e&**« * f *nd •*•*- **" < f 
hold. Thus , 

I t i s the contrary to the assumptions (2.6) and hence (2.4) 

i s val id. . 

2 . Prom (2,4) i t follows (2.5) for any £ € M . It 

means that M c L ( $ ) and therefore \JM m M c L ( $ l -

By the density #tĈ (f m> M in H , the completeness; of 

( 9 ^ ) i s proved. 

But the convergence theorem does not say too much on 

the suitability of choice of an approximating sequence (cjj^) 

Therefore, we define 

Definition 1. A sequence (g>^ ) c H is called to be 



an almost optimal approximation of M if there exist* 

a constant C such that 

(2.7) /k<M*^,-..,9iW) * C & - C M ) 

holds for any m . 

If ( S^ ) is an orthonormal base in H then for 

M"- T C S C 4 ) ) 
• Of m 4 

^CMje,,..,,£^)- M l^C^jW,T^)l
aji 

is valid and it i8 clear that we need some further informa­

tion of ( T €>„) to determine the quality of the approximation* 

The following example shows that* 

Example 1* Let T be in the form (l.l) and 

/tt-V+0* ^Km> "** *"** ̂ -Ui-4 *JJ«. ' "^lov lin-i 

sr 4,,.. . Then ( e ^ ) i s an orthonormal base and 

ЇЛ. 
S"m' Чt2*" • + Oö .. Wв pttt €.' л - Jík , Єл - Л L _ . , Л І 

,*_ír«, ř>a*./M) *-*+o- A.4_. w 

3 . Definition 2. A sequence (cp^) c H is called to 

be strong minimal (see 131,C43> or strong maximal i f there 

e x i s t s a positive constant a^ or Ĉ  such that for the 

e igenva lues^^) , M ~4,..., ft y /rt-'f, ..* of the Gramms ' 

matrices (C % , Q ))<•,-£ ~ 4,.,.-/n t n e inequality 

(3 .1) c, A ( * £ " 

or 

(3.2) ^ i C4 

holds. 

It is proved in [33 that a strong minimal sequence 
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(Cf^) has the uniquely determined the biorthogonal se­

quence (cd^) c LCJ) . 

Theorem 3. Let a sequence (cg^) c H have the bi­

orthogonal sequence (cJ^ ) and let (S^) be an ortho-

normal base in H • Then the following statements are 

equivalent. 

^A^ ( 9in,) i s strong minimal. 

(B) (CI)^) is strong maximal. 

(C) The operator U : H —• JLl which is defined by 

(3.3) UJ - ((*,&„)) 
is linear bounded. 

(D) For any -P € H it is J . K ^ , ^ ) / ^ -f oo . 

(E) The set E - -{ f € H$ .£ Kf , c J^ ) I2 .< + oo ? i s 

the set of the second category of H • 

(F) The l inear operator M% which i s defined on L($) 

by 

(3.4) U 2 % - e^ 

has a bounded extension on H , 

(G) The operator U 3 which i s defined on LC&) by 

(3.5) U*«s* - * k 

has a bounded extension on H • 

(H) The operator U. ; i * —> H which is defined by 

(3.6) V<*J) *£«„**,,, 
is linear bounded. 

(I) There exists a constant K such that for every na­

tural number m, and complex numbers ô ,,..., «c^ j 



/S f , . . . , /.W the Inequality 

(3.7) iJ: «*,„*.i * K ij.iv1-*- *£***>» 
holda. 

Proof. It wi l l be done by the following achem* 

(&)*-* (A)**(C)<°* CD)** (E) *+ (F) *> (6)-*(H)** (I) ~* (A) . 

1. The equivalence of atatementa (A) and (B) waa proved in 

£41. 

2 . (A) -=-> (C). For -f 6 H we denote by £, the projec­

t ion of f onto O f " ) . Let Ijjff "*f^ aiT'^-H. # 

Then /o-Mm P*«P » a- and hence vf-Aum,f£4 «• 9.. • Especi­

ally, i t meana n ^ ^ s (fr, <**, > for a l l i e . By 

the atrong minimality of (9^) we obtain 

and therefore 

! i o î é £''"'' лn 

is valid for a l l rfl £ in . By the limit procesa for 

m —-> + <x> and then for ,w —v 4- 00 we have 

*f l̂ fo4,>!* - i , " - 1 • 
According to the choice of the biorthogonal aequence (cJ^)9 

the eqaalitiea 
Of.tУ„.) - f ç - ' ^ 5 

holđ for a l l m . It meanв 

(3.8) £Ąi«.wi," 
i . e . the operator U i ia linear bounded on H . 

3. (c) -+ (D) «-» (E). It is quite clear .from, the fact 
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that the complete normed linear space is the second category 

of itself. 

4* (EJ—-> CP). We define finite dimensional (and hence boun­

ded) operators 
m* 

Í-ПV A»* -_.?.«,-*>** 

Th«n 

and 

The set { U H i ,*'!#£ *"** ff A*,* l < t ^ ] « £ coincides, 

by the Banaeh-Steinhaus principle of condensation of singula­

r i t i e s (see t5J,p.73) either with H or i t i s a set of the 

f i r s t category of H . B y the assumption, E *• H . Since 

II A A II are convex continous functionals on H , we can 

use the Gelfand lemma on such functionals (see tU,pp.68-70) 

to obtain that the functional 

^jjfvllA^f I I - t J jC^a) * ) ! * ! * 

is also continous on H , i.e. there exists a constant K 

such that the inequality 

holds for every f e H . Therefore the operator \X% which 

is defined by (3.4) is bounded on L C $ ) and, to be one, 

it has a bounded extension on H • 

5. (F) -*«-> (0). Since M% is a linear bounded operator on H 

then the operator U 2 which is defined by Û -f m U^ for 

•f e L($) and 5^4 * 0 for f e H — L C$) is the same. 

The adjoint operator U * is also linear and bounded on H. 

We have 

(3.9) C-fl/.V- " ' . - - . f - O 

- 128 -



for every f e H and thus C f . l i * ^ ) - * 0 for a l l 

f e H - L ( f ) , Then U 2 * i # « L ( $ ) , and, by putting 

-f m cf^ in (3.9) ,we can see that U j g ^ » CJ^ . Set t ing 

Ut » U3 ,we obtain the linear bounded operator on H that 

sa t i s f i e s (3 .5)• 

6. (G) --*-> (H). For an operator l i ^ which sa t i s f i e s (3.5) 

we have 
+& +ae 

and 

(3.10) I I ^ « * . . I - K - Z, «-*• I13 -

for all (*,»)* i 4 . It is quite clear now that the operator 

U^, from (3.6) is linear bounded on &* . 

7. (H) =* (I). By (H), the inequality (3.10) holds for eve­

ry (oc^,) € t% . For any natural number m and complex 

numbers /3t 7 • * -; /&*,, we have 

/TV 

8. (I) —* (A). For fixed ohosan natural Ĵv , j £ , * * &*> 

i s the linear continaus functional on the space of n-tup-

l e s (ocif •••, < ^ ) with the norm eqitfdxnfc to t̂ Z. 'AJ1-12 • 

By the assumption (3.7) the inequality 

15 valid. With respect to the following detenidnatK-nof the mi­

nimal eigenvalue of the Gramma' matrix (C^.cp-j, ))*,£«<.,..• ;<n-
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we obtain 

^ r ^ & > o, 
what means that (c^) is the strong minimal sequence. 

Remark. The condition (E) under the assumption (<i^ ) 

ia a complete sequence in H can be replaced by the fol­

lowing condition 

(£') E is a O^-set in H . 

Proof. E is dense in H aa LC$) c E and (g^) 

is complete. L .being a dense Gjr-set in the complete space 

H, it cannot be a aet of the first category of H 

(see Kuratowaki: Topologie I). 

fe denote by H$ the completeness L ($ ) with res­

pect to the scalar product 

(3.11) (fet?*)* - <&,„ • 

So we have 

(з. 12) н Д c... cv л )ъ i # - cÄ£ i cf, tî^ >i- j 

Corollary 1. Let (g^ ) be strong minimal and (o>̂  ) 

be complete in H • Then there exiats the embedding of H 

into Hx that is continous. 

Proof. By (3.12) and the part D of theorem 3, we have 

This definition of the norm ia correct as (o^ ) is comple­

te. Using now the part C of theorem 3 we obtain a constant 

K 1 > 0 such that 
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C3.13) I * l # -* K, | f l M • 

Corollary 2 . Let (c^ ) be strong maximal and let exist 

a biorthogonal sequence (co^) to (cf^) . Then there exists 

the embedding of H$ into H that i s contincus. 

Proof. The sequence (g^ ) i s an orthonormal base in 

H$ and therefore for any f € Ĥ  there exists 

(<X«,) € Jfr 5itch that 

4-0t» 

By the part H of theorem 3 , the series 21 oc^ Cf^ i s 

also convergent in H and 

(3 .14) II*lH - l£«w<K»-H * K * C X , f l t * , ' - i = K * l * l # * 

Corollary 3. Let (^ ) be strong minimal and 

strong maximal and complete in H • Then (c^) and its 

biorthogonal (O^) are bases in H and the spaces H$ 

and H ^ are t o p o l o g i c a l ] : / equivalent to H . 

Proof« According to theorem 3 the biorthogonal (a)*,,) 

is also strong minimal and strong maximal in H .By the 

part D of this theorem, 51 I Cf -<£. )I2 is convergent 

for all -f € H and, by the part G, there exists a line­

ar bounded operator U ^ such that 

VL%(C^(^CfJ^) »}?C* f «-,>**»• 

Next, by the completeness of (Ql*) / we can see 

+*> 
(3.15) * -JE C*,%,)*U • 

So it is proved that (&!-,,) ia a base in H • A * A 
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base, fcu^) is complete. In the same way we can prove thstd^n) 

is also a base in H • The topological equivalence of 

H$ and HQ^ to H follows now directly from co­

rollary 1 and 2. 

If a sequence (g^) fulfils the assumptions of co­

rollary 3 then it is called to be Riess base in H 

(See C6J). 

Corollary 4. [63 Let (g^ ) be an orthonormal base. 

A sequence (c-%,) constitutes Rie** base if and only if 

there exists an operator U which is defined by (3.4) 

and has the following properties 

(i) U has a bounded extension on H • 

(ii) There exists the inverse U" that is bounded and 

defined on H . 

•Proof* 1. Let (Cf^) be Riesz base. The property 

(l) follows immediately from the part F of theorem 3 and, 

by the part H, it is dlCU)- H . Let 11**0 lor 4 * 

«: SC-TiO^)^ . Then C4,&n) «s 0 for all m 9 and, by the 

completeness of (c*)^ )., f m 0 . Hence VL~1 exists. Using 

now (3.13), we obtain 

iijf (-f,^)£^iu HU-MI ^ M * i . 

It means that IV is bounded. 

2. Let U have the properties (i),(ii). The sequence 

(g^ ) is strong minimal, by the part F of theorem 3. As 

g^s U" S^ , we can use (ii) and the part G to obtain 

(g^) is also strong maximal. If C-f, ̂ ) * 0 for all m 

then ((U- 4)**, e^)« 0 , i.e. C IT V * . 0 and it 

- 132 -



i s f inal ly -f - 0 . It provea that Cg^) ia a complete 

sequence and therefore Cg^ ) constitutes Riesz base. 

4. After the preceding section we can now return to the 

problem of almost optimal approximations. 

Theorem 4. Let T" be a completely continuoua opera­

tor in the form ( l . l ) . LetCcg^c&CDconstitute Riea® base in 

H and let C 0^) be the biorthogonal aequence to Cc/^). 

Let ( "̂  ^ ) be strong maximal in H . Then (g^ ) 
-AT* 

is an almost optimal approximation for M =• TCSC4)) • 

Proof* Let q, m Tf e M . Then 

and 

M .I**! «*<*.» -«9-l.|«>r*«b><f**-(H<«>T^)<y* " ' 

By (3.14), we have 

We use now the parts C and D of theorem 3 to obtain 

The theorem ia proved. 

Remark. It is obvious that the strong maximality of 

( — «» ) where /O, » OCA^ ) . is sufficient for the 

validity of theorem 4. 

We shall need the following lemma for the proof of the 

converse theorem. 
Lemma 1. ([7J,p.325 • ) Let (CL^) be a sequence of po­

ts 
sitive numbers such that 2~ o ^ is convergent. If we 
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denote 6*, ~ 2 . O^ then for any ac -c 1 the series 

21 -^2r i s alao convergent. 

Theorem 5« Let T be a completely continuous ope­

rator in the form (1.1) and letCcg^cdlCT) be strong mini­

mal and an almost optimal approximation for M» TCSCD) . 

Then (—3pr2L) > where (O^) i s the biorthogonal sequence 

to ( ^ , ) 9 i s strong maximal for any cc <: A • 

Proof. We denote l>* $, * Jfv ^C' -̂fc f o r 9- € ^ * 

In the same way as in the part 2 of the proof of theorem 3 

we obtain 

JE.I<-<0' * £ ll»»»- g » I* 
for a l l natural ^ in the case that we define 0/£ -» 0 

for Ms > ffl . Since (cj^ ) must be complete (see theorem 2) 

i t i s Jtim P£ ty ** fr . Thus (see the preceding noted prod) 

(4.D Xic^^-f lS' / ** i i * - 5 f 9 - - f -

Barticulitly, the inequality 

J£ K#.T%>« | IT*- ^Tf l * * £ a l + < 
holds for a l l -f « S CD . By that and lemma l,we can see 

that.SL If*, —Z^A-)\ ±B convergent for any cC < A . Using 
^ j i * 

the parts B,E of theorem 3 we f inish the proof. 

Remark* Let (%,) be strong minimal and complete in 

H . Then, by (4 .1) , i t follows tHAt 
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If (g^) is, moreover, strong maximal, i.e. (g^ ) is Riesz 

base, we have the following important result in practice 

These inequalities can be described as follows. If the 

Riesz base (<%-,) is an almost optimal approximation for 

M then the finite dimensional approximations 

Ĵ  (ty, d)^)q^ of an element q~ e M give also an 

almost optimal approximation. 

Pro off. We have 

5*-In this section we shall show the further condition 

for the almost optimal approximation that will be suitable 

for use in practice. 

If T, U are completely continous operators on H 

and cft(T) c <R,(IL) then we say that U is a majorant 

operator to T • 

Lemma, 2 . An operator U i s a majorant operator to 

T i f and only i f there exists a linear bounded operator 

A - H - * H such that T - UA . 

Proof. 1. If T s* UA , then i t i s clear that 
A(T> c dl(U) . 

2. Let tffcCT) C.0UU) . If we denote NCU) -» 

m { f 6 H 5 U«F - 0} , then Û  « U/HeNCU) i s linear 
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and bounded. U~* e x i s t s and HCU) m SD CU^) • 

We put Am U~ T f i . e . T - r UA . We have only to show 

that A ia bounded. Aa 3CA) » H * the operator A 

wi l l be bounded if and only i f i t wi l l be closed (see £1]> 

p. 150). Let /* - Mnrv f' v 4 and /b - <#rm A*.* » g, , 

Then for Tf_ » <-fw. i t i s /* - ^ n - 4t^» Tf » <#v and 

for g^ .= U^ ^ft^ , we have /s - lum, q^ •» g~ . But ii^, * 

» U-4.k and hence /b - <lvnv M,-m U.O. m M> , i . e . a, « 

s U ^ / b « ItJJ T-t » A 4 # Therefore A i s closed. 

Lemma 3 . Let A . H —* H be linear and bounded and le t 

T? H —* H be completely continous. Let \JL^ * A T or 

U ^ T A * Then the eigenvaluea ((U**, ) of C U j Û  31 or 

[U* 11^ 3 ^ have the following asymptotic behaviour 

(5.1) ^ - O(^). 

Proof. It can be easy obtained from the mini-maximal 

principle of eigenvalues of completely continous self-adjoint 

operators (see [8] fXI,§ 9)# 

Corollary. Let U be a major ant operator to T . Then 

for eigenvalues ( A^), i^) ofCT*TJ, [U*tt.l* the asympto­

t i c behaviour 

(5.2) Xn - OtflJ 

i s true. 

Proof. It i s quite clear from lemma 2 and lemma 3. 

Theorem 6. Let <R,CT) * faiU) and let T and U be 

completely continous operators. Let C$^) be an almost 

optimal appbximation for Mu • UCSC4)) * Then Icg^) ia 

also an optimal approximation for MT
 m T( S C4)) • 
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Proof. By lemma 2, there exists the linear bounded 

operator A such that T » IXA and hence 

MT c UCSCflAID) - «AIIMU . 

Then 

(%3 )^CM r ' ,<^<^ 

Now, using the assumption and lemma 3, we obtain 

These inequalities and (5.3) show that (cfa,) ia an al­

most optimal approximation for M T * 

Remark. Let RCT)»<FICU) be dense in H and let T 

be a completely continous operator. Let It be also com­

pletely continous and therefore for 4 6 H we have 

(5.4) w - J : (-<*«. JUS*,, . 

The sequence (Jhfo) fulfils the properties of theorem 4# 

Proof. By (5.4), (M,^ is an orthonormal base in H 

and hence it is Riesz base. We have only to show that 

T ^Ufu 
— T is strong maximal. But according to lemma 2 the-

re exists the linear bounded operator A on H such that 

T * U A . Prom that it follows that T * « A * LI* and 

T / ^ ^ -* £%& A*€^ . With respect to lemma 2 and lemma 

3, (-^p- GL) constitutes Riesz base. Using that and the 

part D of theorem 3 we obtain that ( —ar^2* ) is strong 

maximal* 
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Example 2. Let T be a completely continoue operator 

in the form (l.l) such that (R(T) is a dense eet in H 

and let(p^) be Riesz base in H and (CO^ > be the bior-

thogonal aequence to (Cf̂ J) . According to corollary 4 of 

theorem 3 there exists the operator U such that 

<&>-***>' A^m U*CJ„ 

and U and U~* are bounded on H . From the proof of theo­

rem 4 it follows ^ 1 

The operator TJ * U" T is completely continous and, by 

virtue of lemma 3, (5.1) ia valid for the non-decreasing se-

quence ((U^) of the eigenvalues of f. T* "7^3* . As T * 

ss VLTj , the converse statement (5.2) ia alao true. If we 

put M . , - 1 . ; ($C4)) f then M, » IT'(M) . Next, we shall 

suppo3e that ( 4v^ ) will be an almost optimal approxima­

tion of M1 , i.e. 

m,* **T1 

By thia ,(5.5) and (ir.l) we have 

(5.6) &CM,^,...,<_^> -=£%..,.< • 

Thus (cjb) is an almost optimal approximation for M , The 

converse proposition is also true. Let (.5*6) be valid. Then, 

by (4.1), we obtain * 

Mtsm*i m*m>r4 ^ ^ 

Using now (5.2), we get 



By connecting this example with the example 1, we can aee 

that the optimal approximation (M^^) for M need 

not be an almost optimal approximation for the Msimilar" 

compact M - V(M) either, where V i s a linear 

bounded operator. 

However, we can prove the following theorem: 

Theorem 1. Let (g^) be Riesz base in H and an 

almost optimal approximation for MT-* T ( S C 1 ) ) where 

T - H —> H i s a completely continous operator. Let 

C - H —> H be linear and bounded and let C~ ex i s t and 

be also bounded* Let C(&>CT)) » (flCT) . If we denote 

Ccfa9 VCn, then C%^ ) i s an almost optimal approximation 

for C'*CMr). 

Proof, With respect to corollary 4 of theorem 3 , (t^ ) 

is Riesz base in H . Let ( CJ^) and ( ^ 4 ) be the bior-

thogonal sequence to C<g^) and (%J) . We denote L^ f m 

we have ^ - C C * ) - ^ .'rid L* 'f.jLcC'U^Cqb 

Hence 

(5.7) i - N I * f | . l * - C a t < ^ . 

If we set U » C~*T then U : H -* H is a completely 

continous operator such that #(U)-»<rt(T>. According to 

the last theorem, (%,) is an almost optimal approxima­

tion for M u » U (5 C D ) . From the last remark of the 

section 4 it follows that ( L^ 4 ) is also an almost opti­

mal approximation for M u . Now, using lemma 3, theorem 
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t 

1 anđ ( 5 . 7 ) , we ob ta in that ( L ^ f ) i s an almost optimal 

approximation f oг M u • Thus ( %^ ) i s a lso an almost 

optimal approximation for M u . 
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