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ALMOST OPTIMAL APPROXIMATIONS OF COMPACT SETS IN HILBERT
SPACE

Jaroslav MIIOTA, Prsha

l. Let H denote & Hilbert space which is sup~
posed to be separable., Let T : H— H be a completely
continuous operator and let @R (T) = T(H) denote its
range. Then the operator A= [ T* ’1']i ( T* is the ad-
Joint operator to T ) is a completely continous posi-
tive operator. Therefore A has the non-increasing se-
quence ( J\” ) of positive eigenvalues and there exists
the orthonormal sequence (in H ) of its eigenfunctions

(e,) (see (11,Pp.189-191). If we denote Ug = Tf
for g = Af then U is a unitary operator and
T = UA . Setting h, = Ue,, (A ) is an ortho-

normal sequence in H and
+ 00
(1.1) TE = 2 A, (fe,) b,
and
a0
(1.2) T"'F - :‘q Am. ('ﬂhm.)'en
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2, I S§(1) is the unit sphere in H then
M= T(S5(1)) 1is a compact set. For the sequence (¢, )c H
we denote the error of the best approximation of M by

Lreorr In as @, (M;¢,...,4), 1.e.

(2.1) %(M;%..,,g’”hm zﬁfmnq«_gm% .

We further denote by (@, (M)  the value of the error of

the best n-dimensional approximation of M , 1ee.

(2.2) . PM(M> =(R'T:/r:‘fq”¢”(Mj Cf,,-..,q,,,) .

Theorem l, Let T : H-=> H ©be a completely continous
operator in the form (1.1) and M = T(S(1)) . Then

(2.3) B, (Mm@, (Mybyys rp)w Ay

Proof. 1. We have
0

2 2-.%
P (M Ry ) = ity LS g 1,24 # £
- 400 2 =
£ a""’” ll?m [L;mu”#’eh)l Ji A“"”

and , on the other hand,for f = €., 1t is

L4
Y T~ = Ny ll= 1 Te, =R .

‘lnﬂ‘iw" "1% ’*” A neq

Hence the right hand side equality is proved.

7 mtd

2, For am; Sy ieey Dy there exists ’h‘?q Qg o
ms 4
2

such that ‘21 la*’\’- ] F1ta 1 and;g; %Ah(h*,q‘.).o

for 4 = 1,...,m ., Then
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~ meq
inf 1TF-3 g b= 1T =L a1t 22 2 2,
Syyeeny %oy *

and, by it,
B M Gpyeey Sp) 2 Amweqg

From this the left hand side equality follows.

The asymptotic behaviour of the minimal error @, (M)
was examined in [2) for some classes of integral operators '
i LY,

Theorem 2. If M is a compact set and (¢, ) is

a complete sequence in H then

(2.4) “m ©n (M5 L5000y ) = 0
and if (2.4) holds and t?m. M is a dense set in H
Nnsq

then (gﬂﬂ_) is a complete sequence.

Eroof. We denote by L (&) the linear hull of a

sequence (g, ) .

—

1. Let (g, ) be a complete sequence, i.e.L(®) = H
( M denotes the closure of M ) and let P: be

the projection onto L (¢,,...,%, ). Then

(2.5) Emig-Plgl=0
for any g € M ., As the functions hg - E:Fg, I ape

continuous on M , there exists the sequence (g, ) e M
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such that
%(M5‘fﬂ"',9’,‘,)= "q:”‘ B’bq—w ",. M = 4,-.- .
We suppose

(2.6) Pn My @yyees; @) 28 >0

for all m , By the compactness of M sthere exist
(Gm,) and g*e€M such that W, Gy = 9* . Now,
from (2.5) it follows that there exists .&, such that
for any A = R,
tg*- 8&9,*]< % and lga - g*I < 929

hold. Thus,
o £ lIg,, - P,:L%*u < Igh- E‘: @ N+ 1g,,- o*- E,i(q/%- M,
It is the contrary to the assumptions (2.6) and hence (2.4)
is valid .

2, From (2,4) it follows (2.5) for any g € M . It
means that M < L_(_CE) and therefore ﬂt:j: mMecl @) .
By the density ;L?qm M in H , the completeness of

(¢, ) 14s proved.

But the convergence theorem does not say too much on
the suitability of choice of an approximating sequence (9;)-

Therefore, we define

Definition 1. A sequence (¢p, ) ¢ H is called to be
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sn almost optimal approximation of M if there exis‘s

a constant C  such that
(2.7) owM;CK,,u-,cfm,) = c@,w (M)

holds for any m .

If (¢,) is an orthonormal base in H  then for
M= T(S1))

@M Epyonsy B dm pupy LS £, T*e 214

T4
is valid and it is clear that we need some further informa-
tion of (T%,) to determine the quality of the approximation.
The following example shows that.

Exapple 1. Let T be in the form (1.1) and

)
m-’o-w i‘n = o . We putezn-4-'h2u'€ -hﬂﬂl-" ’» M=

= 4,... . Then (6,,,,) is an orthonormal base and

ﬁ . fM}E\“u-, h:-i) > y ‘a'du-4

m =+ o pmn—q‘M) n~y+e0 I =+o00.

3. Definition 2. A sequence (g, ) c H is called to
be strong minimal (see [31,(4]) or strong maximal if there
exists a positive constamnt ¢, or ¢, such that for the
eigenvalueo((w*_ Realyoyms muid,... of the Gramms”
matrices ((g;, @, Neyi= ooy m the inequality

(3.1) e, & M
or

(3.2) (a-:ué. c,
holds,

It is proved in [3] that a strong minimal sequence
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(¢s, ) has the uniquely determined the biorthogonal se-
quence (&), ) c Ta@ .

Theorem 3. Let a sequence (g )c H have the bi-
orthogonal sequence (<), ) and let (g,) be an ortho-
normal base in H . Then the following statements are
equivalent.

(A) (¢,) is strong minimal.
(B) (w,) 1is strong maximal.
(C) The operator U : H —+£"  which is defined by

(3.3) Ut = (f,w, ))

is linear bounded.
(D) For any f € H it 1is ;fl(f,w,,)l"<+ o .

=1

(E) The set E={fe H; :‘il(f’, o)< + 007 is

the set of the second category of H .

(F) The linear operator U, which is defined on L(J)

by
(3-4) uz?n = e"‘l-
has a bounded extension on H .
(G) The operator U, which is defined on L (€) by
(3-5) uz i’oy nd a"ﬂ'
has a bounded extension on H .

(H) The operator U, : £* —s H  which is defined by
5
(3.6) U= 8 «, w,
is linear bounded.

(I) There exists a constant K  such that for every na-

tural number m and complex numbers o, ,..., <, 4



/517,,,’ ﬂw the inequality

3. 13 dput & KIE 1o 11 1S B cra
holds.
Proof. It will be done by the following schemas
(B)é=p (A)=> (C) => (D)asp (E) mp (F) =p (Gub (H)=b (1) = (A)
1. The equivalence of statements (A) and (B) was proved in
[(41.
2. (A) = (C). For feH we denote by g the projec-

tionof £ omto L@ . Let P¥f = % afq, .

Then A -Um E’?-F = g and hence w-Lm pés = @ . Espeti-
. )
ally, it means Aumy ay’ = (g,w)  for all 4. By

the strong minimality of (g, ) we obtain

o .
Slamired eder o Lagrted s

and therefore
m
ma 1 2
k;la,. 1 & <, el
is valid for all m 2 mm . By the limit process for
n—-»-rob and then for m — + o0 , We have
+o 4 2
2 A
42?“9””"')-‘ < z, b= .
According to the choice of the biorthogonal sequence (&), ),
the equalities
(F,@p) = (G, )
hold for all m . It means

+%

1
(3.8 = e’ é g 12,

£y

i.e. the operator U, is linear bounded on H .

3. (C)=p (D) = (E). It is quite clesr from the fact
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that the complete normed linear space is the second category
of itself.
4. (E) = (F). We define finite dimensional (and hence boun-

ded) operators

~m
Ant =y ) &
- Then s
m
2
DAL= [ 1C4 )]
and ' " e
R A LR IR S T2 ol L
The set ff¢ H; m sunfA flcroodx~E coincides,

by the Banach-Steinhaus principle of condensationr of singula-
rities (see [5],p.73) either with H or it is a set of the
first category of H . By the assumption, E = H . Since
A £ are convex continous functionsls on H , we can
use the Gelfand lemma on such functionals (see [1],pp.68-70)
to obtain that the functional

run A f 1l - c:g:tcf,w,.)l’l*
is also continous on H , i.e. there exists a constant K
such that the inequa]i.:;y .

L2, 1 (Fra)?]* &« KIFN

holds for every £ € H . Therefore the operator u, which
is defined by (3.4) 4is bounded on L(®) and, tc be one,
it has a bounded extension on H .
5. (F) = (8). Since U, is a linear bounded operstor om H
then the operator ﬁz which is defined by ﬁzf =W+ for
'Fem and ﬁ,h.o foar fe H =L (D) is the same.
The adjoint operator ﬁ: is also linear and bounded on H.

We have ~
(3.9) (ﬁ2f1£w7 = (f, ur "”"’
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for every f € H and thus (f,ﬁ: €,)= 0 for all
feH ~LC(@ . Men UYe, ¢ L(@) , ana, by putting

£= g in (3.9),we can see that ﬁ: En= &) . Setting
ﬁ;‘ = 113 ,wWe obtain the linear bounded operator on H that
satisfies (3.5).

6. (G) => (H). For an operator 1L,  which satisfies (3.5)

we have
tw +e0
Uy (=, Xp€p) = = Xy @y
and
+ +0 q4
(3.10) \(”Zﬂ_' o O, | & K L2 lox, 21T
84

for all (o, )e LY, It is quite clear now that the operator
U, from (3.6) is linear bounded on VAR

7. (H) =2 (I). By (H), the inequality (3.10) holds for eve-
ry («,) € £2 . For any natural number m and complex

numbers ﬂ,', veay ﬁ,w we have
|5 TS ¢ mae KL ia it ¥ 1
& Pl = VG BT, 2, ) € KLZ 1o FT U2 fayca I
m
8. (I) = (A). For fixed chosen naturel m , 2 % B4

is the linear contincus functional on the space of n-tup-
4
les (o, -y %, ) with the norm equaling to E,g, B 112 .

By the assumption (3.7) the inequality
(S 1478 2 K1E I
7] ﬁ"‘ “ L TT] ﬂhqh
is valid. With respect to the following determingtion of the mi-

nimal eigenvalue of the Gramms’ matrix (Cy;, &% ”-;,,‘,. Aeee,n
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m
W = mim My Pade !
g 27%
[h." lA’ J
We obtain

(u,f,'"’zl% >0,

what means that (¢/,) 1is the strong minimal sequence.
‘ Remark. The condition (E) under the assumption (<, )
is a complete sequence in H can be replaced by the fol-
lowing condition o
(E") E 1sa Gy-setin H .
Proof. E isdense in H as L@)c E and (g,)
is complete. E being a dense Gy-set in the complete space
H, it cannot be a set of the first categary of H
(see Kuratowski: Topologie I).
We denote by Hy the completenessL ($) with res-
pect to the scalar product ‘
(3.11) (P Fnlyp = %,m ¢

So we have
‘ 1
(3.12) 12, (fagdlp= LE (CF oIt .

Corollary 1. Let (¢, ) Dbe strong minimal and (), )
be complete in H . Then there exists the embedding of H
into Hg that is continous.
Progf. By (3.12) and the part D of theorem 3, we have
TIN & AT RIS
This definition of the norm is correct as (), ) 18 comple-
te. Using now the part C of theorem 3 we obtain a constant

K, > 0 such that
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Corollary 2. Let (¢4, ) be strong meximal and let exist
a biorthogonal sequence (w, ) to (¢, ) . Then there exists
the embedding of Hg into H  that is continocus.
Proof. The sequence (g, ) 1is an orthonormal base in
Hs and therefore for any f € Hg there exists
(¢, ) € L* such that

1

& R g 2%
£ =u§4 Ky Py and "‘FIQ- [Mia locy I*] .
. +e
By the part H of theorem 3, the series nZ:_q X, S, is

also convergent in H and

o0 g 1
(3.14) 141, = 150,y & K, O, 106, 1018 = Ky 080, .

Corollary 3. Let (¢ ) be strong minimal and
strong maximal and complete in H . Then (g, ) and its
biorthogonal (cy, ) are bases in H and the spaces HQ
and Hp are topologically equivalent to H .

Proof. According to theorem 3 the biorthogonal (c,)
is also strong minimal and strong maximal in H . By the
rert D of.this theorem, ;-Z“: I(#,an)lz is convergent

for all fe H and, by the part G, there exists a line-
ar bounded operator U, such that

U, (£ hge,) = E A g, -
Next, by the completeness of (cj, ), we can see

+

(3.1%) f =2 (Fo)a, -

n

|
-

So it is proved that (&), ) 3is abase in H . As &
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base,(c),) is complete. In the same way we can prove that &7,
is also a base in H . The topological equivalence of

Hp and Hy to H follows now directly from co=
rollary 1 and 2.

If a sequence (¢,) fulfils the assumptions of co-
rollary 3 then it is called to be Riesz base in H .
(See (61).
Corollary 4.[6] Let (g, ) be an orthonormal base.
A sequence (¢, ) constitutes Riesz base if and only if
there exists an operator U  which is defined by (3.4)
and has the following properties
(1) U has a bounded extension on H .
(11) There exists the inverse U~  that is bounded and
defined on H .,

Proof. 1. Let (&, ) be Riesz base, The property
(1) follows immediately from the part F of theorem 3 and,
by the part H, it is RA(UW)= H ., Let Uf=0for f =
= 2(f,4)4, . Then (f,a),)=0 for all m , and, by the
completeness of (cv,, ), f = 0 . Hence U’ exists. Using
now (3.13), we obtain

1F edenll= 1UFT & K 50,

It means that 1" 1is bounded.

2, Let U have the properties (1),(ii). The sequence
(5,) 1s strong minimsl, by the part F of theorem 3. As
D = U'15,,, , we can use (ii) and the part G to obtain
(¢4,) 1s also strong maximal. If (£, ¢/, )= 0 for allm
then ((WN*¢ ¢, 0=0, t.e. (UNH*f =0 and it
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is finally f = 0 . It proves that (g, ) is a complete

sequence and therefore (g, ) constitutes Riesz base.

4. After the preceding section we can now return to the

problem of almost optimal approximations.

Theorem 4. Let T  be a completely comtinuous opera-

tor in the form (1.1). Let(y)cR(T)constitute Riesz base in

H and let (c),) be the biorthogonal sequence to (¢7,).
Let (-T—-—;%"'-) be strong maximal in H . Then (g, )

is an almost optimal approximation for M = T(S (1)) .
Proof. Let g =Tfe M . Then
+00 +00
9=, (G D) Sp =i, (£, T ¥y ) Gy
and
inf I dmaml £ g (6 THa g b= LS, 6 TRy e I

"’ .l

By (3.14),we have

f T " I € K t,:Z 1¢3 T*%M’Jisk A, [§ l(# t’Jj’

We use now the parts C and D of theorem 3 to obtain
PnM5@pyee s I &Ky Apyy o
The theorem is proved.

Remark. It is obvious that the strong maximality of
T*e
(—)

Un
validity of theorem 4.

, where w = 0(A,, ), is sufficient for the

We shall need the following lemma for the proof of the

converse theorem.

Lempa 1. ((7),p.325 .) Let (@,) be a sequence of po-
+00
sitive numbers such that m%. @, is convergent. If we
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+00

denote 6, = Vit then for any ot < 1 the series
40 a,
— - is also convergent.
wT1 Oy
Theorem 5. let T  be a completely continuous ope-

rator in the form (1.1) end let(y,)cA(T) be strong mini-
mal and an almost optimal approximation for M= T(S5(1)).
T*o
Then where (a), ) is the biorthogonal sequence
(-37;"“) R a g q

to (¢,), is strong maximal for any o« < 1.

Proof. We denote P g ’u$4 Qe forgeM,
In the same way as in the part 2 of the proof of theorem 3
we obtain

Slagar « Ligte-pler
for all natural fi in the case that we define a,S:‘" =0
for &k >m . Since (¢,;) must be complete (see theorem 2)
it 1sm_'% 9,39' = ¢ . Thus (see the preceding noted proof)

2
(4.1) :i:'f%a)a"d:)" < %1"9‘ A

Particularly, the inequality .
+%0 2, ¢t
W I, TP & -g; ITE-RETHI 2 & A,
holds for all £ 6 S(1) . By that and lemma 1l,we can see
20 *
that:z;l(f, 19?“—’&-)!2 is convergent for any £ < 1 . Using
i o

the parts B,E; of theorem 3 we finish the proof.
Remark. Let (¢7,) be strong minimal and complete in

H . Then, by (4.1), it follows that
)

= (g @-a0 1 & 53 lg-Pégi* .
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1f (g,) 1is, moreover, strong waximal, i.e. (g, ) is Riesz

base, we have the following important result in practice
¢
lg -2 (@anignl £ Kig-Rig Il .
These inequalities can be described as follows. If the

Riesz base ( CI,,,) is an almost optimal approximation for

M  then the finite dimensionsl approximations

m
. F ) P of an elemnt g e M  give also an
almost optimal approximation. R

Proof. We have
uq-‘f_‘c@,%)qkn £lig-Poq I+ Ikgﬂl'(g.,a)h)-a,‘,:"lqh [P

m 1
clig-Pigl+rc 2 I(g,ap)-an Pt (1+ y*c% Ng-Rigl .

5. In this section we shall show the further condition
for the almost optimal approximation that will be suitable
for use in practice.
If T, U are completely continous operators on H
and R(T)c R(U) then we say that U  is a majorant
operator to T .
Lempg 2. An operator U is a majorant operator to
T if and only if there exists a linear bounded operator
A:H—>H suchthst T = UA .

Proof. 1. If T = UA , then it is clear that
R(T) e R(U) .

2, Let A(T)c R(U), If we denote N(U) =

={feH; Uf = 0} , then U, "u/HGN(L” is linear
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and bounded. U;" existg wnd R =2 .
We put A = U.fT , 1.e. T=1UA . We have only to show
that A 1is bounded. As J(A)= H , the operator A
will be bounded if and only if it will be closed (see [1],
p.150). Let » -ﬂ%fnr ¢ and 4 - lim Af, =g .
Then for Tﬂ:- My it is s -km M,.=Tf= A  and
for g, =W, A, , we have a—mm G =g - But b, =
=1 g; and hence » -lm h,=Ug =h, le. g =
= u;1h= LL;’T'F = Af ., Therefore A 1is closed.
Lempa 3. Let A: H—+ H be lincar and bounded and let
T:H —>H be completely continous. Let U, = AT or
U,=TA. Then the eigenvalues (@, ) of LU} U,,J% or
[w; u, 7% have the following asymptotic behaviour

Proof. It can be easy obtained from the mini-maximal
principle of eigenvalues of completely continous self-adjoint
operators (see [8],XI,§ 9).

Corollary. Let U be a majorant operator to T . Then
for eigenvelues (A,), (w,) afET*TJi, (u*, uit tne asympt o=
tiec behaviour

(5.2) Ay = 0(ty,)

is true.
Proof. It is quite clear from lemma 2 and lemms 3.
Theorem 6. Let A(T)s A(U) and let T and L be

completely continous operators. Let (%) be an almost -
optimal appoximation for Mu = U(S5(1)) . Then (g, ) 1is
also an optimal approximation for M‘r = T(SC1)) .

- 136 -



Proof. By lemma 2, there exists the linear bounded
operator A such that Te LA and hemnce
M_c UCSIAN) = HAKM, .
Then

(5.3) 0 ML3%ye %0 ) 5 MANM 5y, Sy )= BARG, M 5 et S )
Now, using the assumption and lemma 3, we obtain

Q,,(Mui %7"-,%’5 Cr(mes €68 Anes *
These inequalities and (5.3) show that (¢, ) is an al- .

most optimal approximation for M, .
Remork. Let A(T)» A(lLl) be dense in H and let T

be a completely continous operator. Let U be also com-

pletely continous and therefore for f & H we have
+00 ~
(5.4) uf = > &, % ) h, .
The sequence (2{.,,) fulfils the properties of theorem 4.

Proof. By (5.4), (ﬁ“) is an orthonormal base in H

and hence it is Riesz base., We have only to show that

T* Fom
. is strong maximal. But according to lemma 2 the-

re exists the linear bounded operastor A on H such that

T=UA. From that it follows that T*= A*LU* ana

X7 -
T hm %:—: A*E, . With respect to lemma 2 and lemma

"

3, (—“f’- €,) constitutes Riesz base. Using that and the
G ‘*~

part D of theorem 3 we obtain that ( Ta_ ™ is strong
(g4

maximal.
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Example 2. Let T ©be a completely continous operator
in the form (1.1) such that R(T) 1is a dense set in H
and let (g, ) be Riesz base in H and (@), ) be the bior-
thogonal sequence to (ggn) . According to corollary 4 of
theorem 3 there exists the operator U such that
¢, =Uh, , A4, = Ura,,
and U and U~ are bounded on H . From the proof of theo-
rem 4 it follows oo 4
IT+-PETEN£K, Ek‘?m“'”* co,:,n’:lI =
(5.5) - K, E;gmqlcu-q-r,p’hh)lz]f .
The operator T, Su'T is completely continous and, by
virtue of lemma 3, (5.1) is valid for the non-decreasing se-
quence (g, ) of the eigenvalues of L™ 'r.,:lé . AsTs
= UT, , the converse statement (5.2) &s also true. If we
put M,=T, (S(1)) | then M, = U™ (M) , Next, we shall
suppose that (4‘»,,,) will be an almost optimal approxima-
tion of M, , i.e.
400

1
[T (T, f, kP12 & ey, -

[ XX 221

By this ,(5.5) and (5.1) we have
(5.6) B (M3 Gy ) £.C Ay

Thus (%7 is an almost optimal approximation for M., The
converse proposition is also true. Let (.5.6) be valid. Then,

by (4.1), we obtain >

40 400 F3 2. o’? 52
‘“ZMJ(t#,h;)l‘-agaﬁl(Tﬁw*)l’é-‘13-1 KT~ PETEI 5%1 A, .

Using now (5.2), we get ,
pn(M)hu"';hn) & Cy “meq *
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By connecting this example with the example 1, we can see
that the optimal approximation (4,) for M  need
not be an almost optimal approximation for the "similar"
compact M1 = V(M) either, where V  is a linear
bounded operator.

However, we can prove the following theorem:

Theorem 7. Let (g, ) be Riesz base in H and an
almost optimal approximation for M.rc T(S¢1)) where
T: H—H is a completely continous operator. Let
C: H— H be linear and bounded and let €' exist ma
be also bounded. Let C(A(T)) = R(T) . If we denote
Cq,, = ¥, then (%, ) is an almost optimal approximation
for €M), |

Proof. With respect to corollary 4 of theorem 3, (¥, )
is Riesz base in H . Let (c,) and (74) be the bior-
thogonal sequence to (g, ) and (%, ).We denote L,l:f’ -

=2, 0) %, . As |
(Var ) = (Chpyr Um ) = (T C*nm)

we have 7, = (C")Ja)” and L:i?-"gf C"#,ql)th .
Hence

(5.7) 14-LLF 1= 1= Cad ccenhénci-ncte-LE cr

If we set U=C'T then U: H—=>H 1is a completely
continous operator such that R(UY=R (T). According to
the last theorem, (¢4, ) 1s an almost optimal approxima-
tion for M, = U(S(1)) ., From the last remark of the
section 4 it follows that (l_?n £) 1is also an almost opti-

mal approximation for M, . Now, using lemma 3, theorem
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1 and (5.7), we obtain that (ﬂi;?) is an almost optimal
approximation for Mu » Thus (%, ) 1is also an almost
optimal approximation for Mu .
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