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Coamentationes Mathemstioae t t o i v e r s i t a t i s Ca^olinae 

10 ,1 (1969) 

A NOTE OH COMPLETELY DBCOKPOSABLB TOHSIOK PESK ABELIAK GE0U*3 

Ladialav PEOCHXZKA, Praha 

Let O be a t o r s i o n free abel ian group containing a 

completely decomposable subgroup H with t o r s i o n f a c t o r 

group G/ H . In t h i s note we s h a l l f ind some oc&Htlons 

under which the group G* i s l ikewise completely decomposab

l e ; a l l these condi t ions are re la ted with the not ion of fi -

rank of a tors ion free group. 

In what f o l l o w s , by a group we s h a l l understand an addi-

t i v e l y writ ten abel ian group, and the l a t t e r <ft w i l l be r e 

served f o r a prime number. If G i s a t o r s i o n f ree group then 

by a bas i s of G we s h a l l mean any maximal independent s e t 

of G ; i f M £ G then {Ml* represents the minimal 
a 

pure subgroup of G containing M , If all non eero ele

ments of G are of the same type AM* then G is said 

to be homogeneous of the type AJL \ in general the symbol 

%CG) will denote the set of all types of non sero ele

ments in (r . For a type 4/c the relation 4/c(-fv) = oo 

means that in any height belonging to A/c the ~f& -height 

is oo » If G is a torsion group then GCjft) stands for 

the /ft -primary oomponent of Or . Other notation and termi

nology will be essentially that as in 121. 

Since many ot the following investigation9 are based on 

the notion of jv -rank of a torsion free group we begin the 
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Proof. Evidently we can assume H =¥ 0 . let A -=• 

- C X f ^ j — ; ^ *• a V -»*8is °* H . She purity of H 

in G implies the Jf\f° -independence of A in Cx • 

Thus A can he extended to a î -basis A*-* <X--••*?'*&, 

X * ((.el)) of G . Let B be a baeia of H with 

A c B } therefore* B-» CX,, X2- ,**, •Xfej'".* •*** ) * *
op 

the set T5 - fXf*-•»•*„,) *** ̂  el)) we shall ahow that 1 

is independent* In the contrary case we should have a re

lation 

CD ^ ^ ^ - + ^ ^ + ^ \ / ' - + ^ ^ = ° 

where JU» , IT- are integers and 1/r ** 4- 0 Ci« 'V"? n7t ) • 

If H r f ^ r - ; ^ ; X * , ^ , ^ } * the* by (1 ) i t i s 

K «-rtCH)-< rm- -+• nn • Prom the >/x -independence of the 

set C x 1 , . . . , ^ , t X ^ l
r # . 1 x t ) in H i t follows by UtTheo-

ram 1] that /t CH ) £ K- (<fo+/m) < /n+nn,-(fo+/rn,)=* rn-Ji. p. 
Simultaneously K, (H)*(n-M, and H £. H which i s in con

tradiction with [5, The or em 5 ] . Thus we hare established ao-

tually the independence of B • The set B may be exten

ded to a basis B* of G . By C4*Theorem 11 i t i s K^ C(r)~ 

m ccotcL C &* - A * ) and alao ft(H)^ ocucd ( B - A) . From 
P 

the inclusion B - A s B ^ - A * i t follows the a l 
ternant of lemma* 

Corollary 2* For a forsion free group G i t holds 

k CG) m Q i f and only i f M (H) =* 0 for each i t s pu-
f* * f»- -̂  

ra subgroup H of finite rank* 

This is an immediate consequence of the previous asser

tions* 

Lemma 3* Let G be a torsion free group and H any 

of its pure subgroups of finite rank* Than A (&) m /c CH) 
-.142- ^ 



present note with several assertions concerning this notion* 

For 

L4J-

For the definition of <p, .rank and ^°° -independence see 

Lemma 1* Let (x he a torsion free group. If /c(H)^0 
——— ?* 

for each its pure subgroup H of finite rank then ft (&)& 
1* 

* 0 as well* 

Proof* Suppose that K^ (&) > 0 , If A is a -/&**-

basis of <j ( then A is independent) and if B is a ba

sis in G with A .5 E> then by C4fTheorem 1J it is 

land (B>-A)s*/tflC<x)>0 ; therefore, B - A ± 8 . Thus b 

is not fi°° -independent in (r , which implies that some 

finite subset dx,*; Xg, •'•? «X^ ) of ft is ^ ° * -dependent 

in G-. It we put H « { oĉ , «x^7.,,, x ^ | * then ths ele

ments X.p X17...7 X^ form a basis of H which is ff°-

dependent in H (H is pure in G ) j this means in view 

of [4tLemma 3J that 0 < /fc* CH IK ̂  -.-, 7 ̂  J ) , 5ince H is 

of finite rank the Theorem 4 of [73 can be applied* .Thus we 

obtain 

0< * ; C H / { x . , , . . . , j ^ n - V H ) 

which is in contradiction with the hypothesis* Consequently, 

the validity of /t (Gr) * 0 is established* 

Corollary 1* If G is a ji -reduced completely de

composable torsion free group then /*L C<r)-» 0 • 
7* 

Proof* from [5.Lemma 6*1 and theorem 6 J it follows that 

/O (H)ts 0 for each pure subgroup H of finite rank in (r, 

Lemma 2* Let G be a torsion free group and H a 

pure subgroup of finite rank in G • Then /c. (H ) 4* H. (Cr). 
7* ft 
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i f and only i f /c CG/H) « 0. 

Proof. Assume f i r s t ly A CG)-=• /t CH.) and *L C6T) > 0 

where (? ~ G-/H . % Lemma 1 there exists a pure subgroup K 

in (5 of f in i te rank with Ktfp(^) > 0* K may he expres

sed as X** K/H where H s K and K i s a pure subgroup 

of f in i te rank in G # According to [5,Theorem 6J one can 

write H,p(K)~H.^(H) + M,jK)>!tpCH)*: tc^CG) which i s a con

tradiction with Lemma 2. Thus the validity of x> (G/H) - 0 

i s proved* 

Conversely, l e t /t CG/H)*0 hold. It A- (\; <, € I ) 

i s a ^ -basis of G m G/H then in view of £4,Theorem 1J 

A i s a basis of G as well . Now we take in each coset S<L 

( L c I ) an element .X̂  and put A » ('^ ; t e J ) # It i s ea

sy to see that .A i s ^L° -independent in G ;furthermore, 

i f B i s any basis of Q with A S B then c«*^ CB-.4)*--

a At (H )»/U . Let ^ = (fy.j -.., nfa) be a </if* -basis and B =- (%,«. 

.. - 5 ^ ? ' " ? ^ ) a basis in H . Clearly, the set A2 « /4 u A^ 

i s f& -independent in (x ,therefore, A2 can be extended to 

a ^l -basis A* of 6 . I f B is a basis of G such that 

/ 4 * £ B thon we have by [4,Theorem U * ^ ( G ) ~ MJccL Ce>~ A*>~ 

£aaxct(d-A9)3a<ri-Jk,a/c(H).ThlB last inequality with -* ?* 
tCp(H) £ Hfr(G) (see Lemma 2) give the desirable relation 

^(G) -* h,(H). 

In what follows, we shall use the notion of Baer's c las

ses f̂  of torsion free groups (see £11 and also C2],§ 48). 

We recall that Q is defined as the class of a l l oountable 

torsion tree groups! for oc >- 4 a torsion free group G 

belongs to £ i f < j £ Q (fi '<: oc ) and there exists 

a pure subgroup S S G of f in i te rank such that G/S is a 



direct sum of groups belonging to classes with indices less Inanee. 

If G i s a torsion group then by 7TCG) we shall de

note the set of a l l primes with CrCfrv) 4= 0 . 

Theorem 1* I>et G- be a torsion free group containing 

a homogeneous completely decomposable subgroup H with 

torsion factor group G/H . Let the set T T C S / S n H ) be 

f in i te for each pure subgroup 5 of f in i t e rank in Or • 

Then G = H i f and only i f tt^CG ) * 0 for each fi € 

eTTCG7H) and <r belongs to some class 1̂  » 

Proof* At f i r s t we suppose that G & H . Thus G i s 

again completely decomposable* therefore* G e Q. C<*» & -2). 

Clearly, for </!, 6 TTCG-/H ) the subgroup H cannot be >/i- -

d ivisible* This fact together with the homogeneity of H im

ply that H i s fi -reduced* How by Corollary 1 we obtain 

0 - ^ C H ) - rV Cfr> . 

For the proof of the sufficiency suppos e that ft^ CO-) m 0 

whenever jt 6 TTCCr/H) and that <3r belongs to some class 

Q . Take an arbitrary pure subgroup S in G of finite 

rank and put T «* S n H $ thus T is a pure subgroup in 

H of finite rank and TT C S / T ) is finite in view of 

the hypothesis in theorem • From the relations 

C2) " S / T - S/CSr> H ) - * iS,H}/H s Gr/H 

i t follow* that TTCS/T) £ TTCG-/H) . In view of n^CG) = 0 

for each / f i e T T C S / T ) £ T r C G / H ) we infer by Lemma 2 

that /t CS)*0 whenever </* € TTCS/T)»Hence, by £5fTheorem 

51 the group S / T i s reduced andf therefore* f inite* 

Next T as a pure subgroup of the homogeneous completely 
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decomposable group H i s again completely decomposable (see 

[2 , The or em 46*6 J ) and homogeneous of the same type as H . 

Theorem B of [3J gives the relation S 3- T . The oubgroup 

S being arbitrary, we have shown that G i s homogeneous 

of the type of H and that eaoh pure subgroup of f in i te 

rank in G i s completely decomposable. Thus, i f K ^ L 

are two pure subgroups of f in i t e rank in G then by £2, 

Theorem 46.8 and Theorem 46.6] the group L/K ie complete

ly decomposable and homogeneous of the type of G . Conse

quently, for eaoh pure subgroup S of f in i te rank in G 

the group G / S i s homogeneous of the same type as G 

(and also H ) . According to [2,Theorem 46*2 J G i s comple

te ly decomposable. Finally, the equality /t CG) =. ft CH) im

pl ies the desirable relation G & H * 

Corollary 3* Let G be a torsion free group containing 

a homogeneous completely decomposable subgroup H with redu

ced torsion group G/H . Let T T C S / S A H ) be f in i t e when

ever S i s a pure subgroup of f in i t e rank in G . Then 

G* & H i f and only i f G belongs to some class Q . 

Proof. Let S be a pure subgroup of f in i te rank in G 

and ft e TTCG-/H). The eubgroup H cannot be ft -d iv i -

s ib le , therefore, i t i s fi -reduced; thus by Corollary 1 we 

have *>pCH ) -» 0 . If we put T-» S r\ H then T i e pure 

in H and oJf f in i te rank, Thua Lemma 2 implieo that tc^CT)* 

st 0 . For the group S / T we have the relation (2) , the-

refore, S / T i s reduced. Henoe by [5,Theorem 5J i t follows 

%>+ C S 1 *» *l ( T ) = 0 . In view of Lemma 1 thia mean© that 

%CG) a 0 for eaoh fi e TT CG/H ) , S being taken arbit-
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rary. How we may apply Theorem 1. 

Corollary 4* Let G be a homogeneous torsion free 

group such that for almost all primes ^ it is jiGr & G. 

Then G is completely decomposable if and only if G 

belongs to some class Q and /t (&) ** 0 whenever 

>jrt G + G . 

Proof. Evidently the above mentioned conditions are 

necessary for the complete deoomposability of G . 

.For the proof of sufficiency take any basis B-» Cxt 5 

L e I ) of G . set J » { x ? * (t e I ) and define H -

= X J . Then G/ H is torsion, H is homogeneous 
Lei i* 

of the same type as G and hence ^ H * H for almost 

all primes -fa ; it is obvious that p , e TT(G/H) imp

lies jv H 4* H ( and also ji> G 4* G) f therefore, the set 

TT(G/H) is finite. Thus we may apply Theorem 1 and we get 

G » H . 

The following theorem is also a consequence of Theo

rem 1. For the definition of the groups H(vc) and H*(<oc) 

(if H is a torsion free group and A/0 a type) see L2J$ 

§ 42 . 

Theorem 2. Let G be a torsion free group contai

ning a completely decomposable subgroup H and let G/H 

be a torsion group with finite set TT(G/H) . Bet % (H ) 

be inversely well-ordered and put G(AK)^{H(AK)}^ and 

G*Ct*)~ <H*(*t>)}£ *°* **>'* VtH) < If for each 

4/1 € 7(H) the group G(4K)I G^(AJL) belongs to some 

class Q and ^(5(4*)/$ * (AH, )) m 0 whenever 
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^e TT((r/H) then G & H . 

Proof, If H » X J, ifl a complete decomposition 
•"•• b € I -* 

of H and i f 4JC e Tf(H ) then we denote by H^ the direct 

sum of a l l J (u e I) of the type *H % hence, H -» 
u 

» Z H „ and HO*) = HM-i- H* (vc) for Vv e ?(H ) • In 

view of the definition of g"*6cfc) we hare 

(3) {H(4*,),G*(to)lM{H„,G*(4*)i =H„+ S*(4tc) . 

We may also write 

(4) Sr » C G C ^ ) / G * f ^ ) J / C { H C ^ ) ; C > ^ ^ ) ? / a x C ^ ) J S 

*LG(4*)/H(<*)]/KH(<oc)9G*(<M,)1/H(<*)J • 

The purity ot H (<vt) in H implies the equality HC-ofc)-.? 

s» (x(<OC) f\ H and hence 

^ C ^ V H C ^ - ^ O ^ / C G ^ ) ^ Hl~{G(4Jt))Hl/H sG/H . 

Thus we hare shown (see (4)) that 1TC£ ) s TTCG/H) • 

Prom (3) i t follows 

(5) ( HU*)., G*(4Jc)}/U*(>vc) = K^ $ 

th i s means that i H (<W>), G*(A* )}/&*(&) i s a homogeneous 

completely decomposable subgroup of the group 5Cvc)/G*(<Oc), 

It i s easy to see that Theorem 1 may be applied to 

STC-cfc ) / lS*(<Ut) , Prom this fact we conclude C see also C 5)) 

the isomorphism relation G CM*) / 5* *(<Jc) -« H^ * there-

fore, 6 i <K) / "5 *(<JC) i s completely decomposable and homo

geneous of the type <uc . Prom ISCiK) » KHC<Jc)j* i t 

follows the inequality t^/ze »K ^ ^ whenever 

•14&-



0 + X e (r (Vt ) ; thus typji x ** AJV for each X € 

e <j(vt>) - &*(<(&) >*t *• »PPly the Baer'e lemma Ceee £2,the 

note following Theorem 46*5J ) we can write a direct decom

position 

C6) S t o ) - G + 7s*M> ^heve Gk*&Ct*)/<**Ci*> * H* • 

How hy a transfinite induction on AJt> 6 ^ (H) we ehall 

©how that (? (AJC ) m 21 -5A. , for each ^ € 7(H). For 

the greateet element 4Jt,9 of ^CH) wo have H*(AK0) » -

.» 0_» Gr*(4H,c) , therefore, under (6) GC<^)-»G^ » S <%. • 

Let ^ e iTCH), ^ < AJCO and le t ue euppose that 

our assertion holds whenever VI e *)f (H) and AX, <AJL & <Vt . 

Evidently H*Ofc,) « U HC.</fc) and hence (T*^) -* UGCvt). 

Prom this fact, by the inductive hypothesis we conclude that 

5 * (<*) • 51 £b * and in view of C6) we have QCAH, )** ? „ QL * 

Thus the proof hy induction i s finished. Since H* U,,H(AH,) 

and G--=f(Hj^ we get 6 m ^ ^ C H ) ^ CAM.) } therefore, G * 

«r 2- Gi . This implies Csee also (6 ) ) 
Jb>t7CH) * 

G « 21 G, sr Z i t » H 

which proves our theorem* 

Next we ehall prove two elementary statements concer

ning Baer's classes P^ • 

Lemma 4» If 0*^ C-t - 4, 2 , . „ , m ) are toroion 

free groups ouch that G.̂  € (^, Ci * 4 , %9 ••• i m) t*<*n 

- H 9 -



there exists an ordinal oc £ <tnax. £oc^^ oc^,... 9 ac^ 2 with 

G 4 - G 4 - . . . 4 - ( ? - s G e r L . -

S^oof. If oct• « oc5 » . . . a oc^ . 4 then G € rj . 

So le t us suppose that 4 < oc^ for some -c ; without loss 

of generality we may assume that <K « . . . -=r oc (Jk, £ nrv) 

and oc. ^ oc » oc. for i t 4 i . If ff € P. for some oc -< oc -s 

SB .râ z*: Cot̂  ,oc2.,..., oĉ  1 then our lemma i s proved* Thus sup

pose that G <£ Q whenever /S < oc . For each -£ (4 i? 

.g: -£ -4 ^t ) there exists a pure subgroup S^ in G^ 

of f in i t e rank such that (r̂  / S ^ i s a direct sum of groups 

belonging to Beer's classes with indices less than oc . 

Henee S = Ŝ  4- S% 4-. . . 4- S ^ i s a pure subgroup in G 

of f in i te rank and Or/S i s a direct sum of groups from 

classes of indices less than oc. , Thus G e Q. and lemma 

i s proved. 

Lemma 5» Let H be a pure subgroup of f in i te rank in 

a torsion free group G . If G € PK then G/H e l"*̂  

for some ordinal /3 is oc . 

Proof. For oc > A the assertion i s t r i v i a l . Hext we 

8hall proceed by induction on oc . 

Assume oc = A and let our lemma hold whenever the 

corresponding group belongs to a class with index less than 

oc . In G there exists a pure subgroup S of f in i te rank 

with G/S * 2 . 5r. where (r e Q for A < <K ( L 6 I). 

then S*««(S , H } * i s likewise of f in i te rank and we 

have 



(7) (G/H)/(S*/H) « G/S* ^ (&/£)/S*/S) , 

where S*/S ( S V H resp.) i s a pure subgroup of f i n i t e 

rank in G/S ( i n G/H resp,) • Thus S*/S i s con

tained in a direot sum of & f i n i t e number of groups Gu 

( l 6 1 ) and in view of Lemma 4 we may suppose that S*/S 

l i e s in some GL ( t € I ) » 
© 

Hence 

(8) CG/S)/CS*/S)= GL /CS*/S)+£L \ 

where 

(9) S[# / C S * / S ) € f J > /3 £ / \ < * > 

following the induotlTe hypothesis, How, i f G/H £ JT for 

eaoh /3 < oo then from (7) tC8) and (9) i t follows that 

G/H 6 P < -*-»** the proof by induction i s finished, 

low we are in position to prove the following theorem* 

Theorem 3# Let G be a torsion free group containing 

a homogeneous completely decomposable subgroup H such that 

G/H i s a torsion group with f in i te set TTCG/H) . If 

H CG)< !A0 for eaoh -ft e TTCG/H ) and i f G* belongs 

to some olass Q then (r * (^ 4- Qrx f where Ĝ  i s of 

f in i t e rank and Ĝ  i s completely decomposable and homoge

neous of the same type as H . 

Proof, If S i s any pure subgroup in (J of f i n i t e 

rank then rjy Lemma 2 i t i s H. CS) £ ft^CG) < H* tor eaoh 

prime ft e TT » TT ( G / H ) # If we put 

R ( S ) - SI /fc>CS> 
0.6 TT * 

then we have ( TT being finite ) 
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RCS) ^ W G ) ** *• 

for eaoh such pure subgroup 5 . Consequently, among the 

pure subgroups S SZ G of f in i t e rank there exists one 

with the greatest R C S ) ; we denote i t by Gn . Thus 

H1 • H n Ĝ  i s a pure subgroup of f in i t e rank in H and 

by [2fTheorem 46.81 H1 i s • direct eummand in H . We 

•hull write H * ^ 4 - H2 and put £*-={£.- ^ H J j since 

^ n H j . G ^ H n H2« H ^ H ^ f l , we h«Te G*» G1 + Hz . 

If we denote 5 -» G/&, then we show that tt. CG) =• o for 

eaoh /ft elT . On the contraryf assume that /t^ C(x )> 0 for 

some ft0 6 TT • Lemma 1 implies the existence of a pure sub

group 5 In ? of f in i t e rank with /t C3> ) > 0 „ Then S" 

may be written as 5 = S / G where S i s pure in G and 

of f in i t e rank as well . By [5fTheorem 6 J i t i s ftCGJ £KCS) 
1%, I -p. 

for eaoh >ft e TT and simultaneously /*. CGj).< H, CG^ )+ H^CS)« 

•» /t^CS) whioh means that RCG^) <: RCS) .The las t Inequa

l i t y contradicts the oholoe of G1 , therefore,/i^CCx)« 0 

whenever ^t e TT • Bow, by Lemma 5 G/G^ belongs to some 

olasa P . Prom the inclusion H S &*" we eonolude 
<x 

TTCG/G**) s TTCG/H ) -=- TT «nd at the same time we haTe 
G/G* Ssk CG/G^/CGVG,, ) . 

The group Ht ( as a direct eummand of H ) i s likewise 

completely decomposable and homogeneous of the type of H » 

Since G*/G1 » Ĥ  we can apply Theorem 1 and we get 

G/G1 -* G*/&f s- H^ . Thus we hare shown that G/ G1 i s com

pletely decomposable and homogeneous of the same type 4H, ae 
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H . Since G / H i s torsion we hare AK A type X for 

eaoh x e G, ex ** 0 ; therefore, i t i s precisely ttjpe x m 

m <OL whoneTer x s G - Gi . This means that the Baer's 

lemma nay be applied (see C2,Lemma 4-6.31) to the group G 

and i t s subgroup G1 . Hence, G m Gj 4- 6-± ? where Gz -S 

& &/G1 .3 H2 . This completes the proof of our theorem* 

If G i s a torsion free group then by G L<p>°° 3 we 

shall denote the maximal ft -d iv i s ib le subgroup of G . 

Theorem 4* Let G be a torsion free group of f i n i 

te rank containing a homogeneous completely decomposable 

subgroup H such that G/H i s a torsion group with f i 

nite set TT CG/H ) . If the type set 7(G) i s ordered 

then G i s completely deoomposable just if/t (G)ss/cCGLf^J) 

for eaoh >fz e TTCG/H ) . 

Proof* If G i s completely decomposable then for e-

Tery prime number /ft i t i s tt CG)tsK,CGLfi0*l) C see ^.Theo

rem 6 and Lemma 6.1J )• 

Conversely, assume that /tftfCG)^/c(G[fia€?l) whenever/ie 

e TT CG/H) and show that G I s completely decomposable. 

We shall proceed by induction on the cardinality of V-(G) . 

If # C G- > = { -^ ? then G i s a homogeneous group of the 

type Ajt^ . Let H-= , Z O- be a complete decomposition of 
» <i a *f ^ 

H and put 0 * « {J. ?* (i~19 Z,~.,tn) -thus we nave G* «r 

• t ^ V v ^ J - * S J / a n d t ^ e ^ f - ^ C* - 4 , . - - , « >.. 

Since H fi G^ G / G * i s a torsion group with TTCG/G*)£ 

£ TT CG/H) . We shall show that the group G / G * i s redu

ced* On the contrary, assume that G / G% contains a sub

group C(p>f) for some fimc TT (G/G*) . By [5.fbeorom 5J 
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this implies the inequality 00 ^ CG*) < %<f
CG') - T h e 

group G i s homogeneous, therefore, G Cfi^J-* 0 or G Lpf"J» 

m G for every prime <p* . By hypothesis i t i s ^ CG) » 

» *CGfft~J) and henoe in view of the inequality 0< K^CG) 

we conclude that G Lfd = &. Worn the purity of 3 ? in 

G i t follows D*Lfi?J m J? , hence K^Cl*)* 4 Ci*4,...,<n.) 

(see [5»Lemma 6.1] ) 9 therefore 

t CG*)- *i ** *C<J)** % CG) . 

thus we get a contradiction with K^ CG*) •< K^CG) . This 

already proves that G/G* la reduoed, as stated, Since 

TTC&/G*) i s f i n i t e , we have ehown that the group G/G* 

i s f i n i t e as wel l . By Theorem B of 131 we have G « G* , the

refore, & i s completely decomposable* 

Next suppose that ccuod %CG) *>M* & 2 and the 

theorem holds whenever the corresponding type set contains 

l e s s than Jk> element©. I e t ^ # < ^ < . . . , <^fc,-'f be the 

sequence of a l l element© of %CG) . If we oet G =-? &C<4£^) 

then G1 i© pure in G and 7/CG^ ) - ft*,,,..., , 4 ^ ? . The 

subgroup H ^ G ^ n H i s pure in H . therefore, H, i s 

a direct summand of H ( see C2,Theorem 46.8J); thus we may 

write H~ H1 4- H^ . Let H^-^S. 3± be a complete decom

position of Ha and put J**-.{a|* Ci - 4, ...,<m.) . s r i . 

dently %te D?« ^ ( i » V ; ^ ) and H*~ { J * . . . , q £ f » 

* iFi 3 f ' S l a c * H* n G, - 0 We may define a group G* 

by setting G* ~ G ± H* j therefore G*/G flf H* = 
*» -2. 
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ml. 

» . S. J . * . We have also 
4, s- 1 t 

( 1 0 ) CG/G4 )/(&*/«,)« £ / G * 

and TT (GV (?*) S TTCO/H) as a consequence of H e G*. 

Next we shall prove the following assertion: 

(A*) If for a prime number fv there exists an index ^ 

CO -a ^ is &, - 4 ) with ^ (7%) -=00 and i f ^ i s the 

smallest of such £'B then G L^°l » G (<&+ ) • 

Indeed, <oi4(fv)&o0 implies the inclusion G(4JCj £ GLft* Jr. 

On the other handf i f Q*fyt GLft0] and type 9- -* ^ 

then /6t-(f2-).s 00 and hence <j, a\ pj> . Thus we have ^ ^ ^ 

& A/L- , therefore, C£- £ G COCJ) £ (x(4fc. ) . Shis means 

that the inclusion Gift,"] fi G (-dt̂  ) likewise holds, 

and the proof of (A) i s complete* 

How we shall show that the group G-/G* i s redu

ced* On the contrary, suppose that C(pf°) i s a subgroup 

of G/&* . By [ 5»-theorem 5J we have 

(11) 0 * %, C&*) < /t^ Cb) . 

Since rC^CO) sr^CGLfi^l) f from (11) we conclude that there 

exists an element <̂ -; 0 =fc 9. € (7 Lfif°1 . If vt.is type q* 

then /Ofĉ  (f&> = 00 . Let % he the smallest among the 

indices ^ 's with AX, (<fi)s=. 00 $ then by (A) i t i s 

Gtfi°°l *G(4Cj). It i ~ 0 then fr-s G(*£e) ~ G L fi°° J 

and the group G i s /fa --divisible. Hence, the group G*» 

* ^1 "*" 1X1 3j as a direct sum of pure subgroups of 
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G is likewise .>fx -divisible! therefore, 

/fĉ CGr*)-. *CG*)= H.CG)^^(G) 

which is in contradiction with Cll). For i £ A we have 

under CA) GCf^ .1-* GCKJC^) Q G COL^) -=* &1 , and henoe 

4^CG) « KCGLpri)^ K^CGipTl) £ /fc.n.CG,) 4 fc^CG*) 

which again oontradlots to Cll). Thus we have shown that 

G/ G* is really rednoed. This faot together with the fi-

niteness of TTCG/ G*) imply that the group ~T/G* it

self is finite, G being of finite rank. Since G*/G1 

is homogeneous and completely decomposable, in view of CIO) 

we may apply Corollary 3 and we get 

G/G* * ff*/G, * H* - .£ } * • 

Thtts G/Gi i s homogeneous of the type AJL0 , ty/te £. * <4fc* 

for each g / e G - G j , therefore, (r» G, -f- 6^ ond Cr S 

-« G/Ĉ r =S ^E. J * which i s a consequence of Baer's lem

ma C [2,Lemma 46.3 1) • 

For the complete proof of our theorem i t remains to 

prove that G1 i s completely decomposable. We have alrea

dy remarked that Hj .sGr.oH i s a homogeneotts and comple

t e ly decomposable subgroup of G^ . Since 

S,/H,« (?1/(G1nH)«-C& i,HJ/H s G/H , 

Q, / H is a torsion gronp with TT (G1 /H, ) £ TF C G/ H ) . 

Because G-- is of finite rank and the set TT" CG^fy) is 

finite, under [5»Theorem 1] Gi /H, 1B a direct sum of 

a finite group and of a divisible group. Thus, there exists 
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In, Gf a euhgroup K1 ouch that H ^ ^ , ^ / H j i« 

f in i te and 6c- / K,, i e diTieiblej eridently TTCĜ  /K^ ) 9 

SnCGj/Hj) STTCG-/H). Ae a coneequenoe of Corollary 3 we 

get K -a H, and hence K1 i e a completely decomposab

l e homogeneous group. For Tf(Gi/Ki ) « & i t i s fi| -=» K<, 

and <?,- i s really completely decomposable. Thus, suppose 

TTCĈ /K,- ) ** $ a n d t a k a ft e VtCGi /K^) • we ehall TO-

rifjr that ^ CĜ  ) * /t CO,, Cfi/" J ) . Since C Cft* ) i e a one-

group of (J- / K1 , in Tiew of C5fTheorem 5 and 6J we haTe 

0 6 fc^CK^X /t^CCr,) i ^ C C T ) - /cCGCfv^l) • 

Hence G Lfi/*J =£ 0 and there exis ts an index g. 

CO £ £ £ M,- 4) with »t* Cfx ) -» oo ; again denote oy 

<i the smallest of ouch ^ 'e • 3y the statement (A) i t 

must he G Cfi^J* &C<^). If 4, m 0 then GtfC°l - GCc*,) « &, 

therefore, <x,Cfi°"J*G^ and in thie case A CC^)- /tCCSj)-* 

=/tCGtfv~l).It i i 1 then(rCft^J«cGCt^)S < K ^ > » Gi, 

and we conclude Gtfiml -* Ĝ  tfi^l . Since (5 Cfî J £ Gf , we 

haTe also (see [ 5 > The or em 6 J ) 

KpCG)~n,CGtft<"l)m fC^CGifi^l) & ftfv(G1) £ ^ C&; 

which implies that K^CGJ^H (GtfL°°l)« / tC^ Cfi^J ) . Thuo 

we haTe shown that K>p,CG, )-= # CG; tft*°l) for each fx e 

ftTTC&1/K1 ) . Because VCC )̂ * { 4 * f , . . . , AJL^ ^ J % i>y induotiTe 

hypothesis the group G1 i e completely decomposable. The 
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proof by induction i s thus finished. 

From Theorems 3 *na 4 we may conclude the following 

statement. 

Theorem 5. Let G he a torsion free group contain

ing a homogeneous completely decomposable subgroup H 

such that G/ H i s a torsion group with f in i te set 

TTCG/H) . Suppose that the type set ¥ CGr) i s ordered 

and that K^CG) < *40 for each prime >ft e TT CG-/H ) . 

Then the group G i s completely decomposable i f and only 

i t G belongs to some class Q and^CG^/tCGC^0 0]) 

for each fi e TTCG/H ) • 

Proof. Evidently If G I s completely decomposable 

then G e Q. COG £. 2 ) and n!fvCG)ss/t,CGtfv^l ) for ere-

ry prime ft . 

Next assume that fr e H and/t CG)«-/tCGLfi/"J) for 

each fl e TTCG/H ) y and show that G i s completely de

composable. If G i s of f in i t e rank then i t suffices to 

apply Theorem 4# For stCG) & H 0 ? by Theorem 3we hare 

Cx - G.., 4- CĴ  where rtC(3^)<c £*0 and G*-, i s completely 

decomposable and homogeneous of the same type as H j evi 

dently G2 4s 0 . If we put fy = G1 o H then Ĥ  

i s pure in H and in view of r2fTheorem 46.6 J H1 i s 

likewise homogeneous and completely decomposable. Since 

^ / H ^ G ^ / C G . n H j S ^ G ^ H J / H £ & /H 

i t i s TTC<VK,) S TTCG/H) and henoe TT CG., / H^) i s 

f i n i t e . Clearly, for any^ie TTCQ /̂H^ £ TT CG/H ) the 
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groups H and &2 are ft -reduced. This means that 

GLft°°l £ G1 , therefore, GlpS0!* GA Lfi*°l . From the 

complete refl'icibility of G2 i t follows (see Corollary 1) 

0-^Cfii)- VG/G,) i 

Thus, by Lemma 3 (see also the hypothesis of our theorem), 

we have ft CGA)=H.XG)**ttCGLp,t°l) ~ itCQr Lft°°l ) . In view 

of the inclusion VCG^) £ I^CG) ? Theorem 4 may he app

l ied to the group G1 and i t s subgroup H1 . Hence G^% 

i s completely decomposable which completes the proof of the 

theorem* 

Corollary 5« Let G be a torsion free group with or

dered type set %CG) , l o t fi,<T ** G be for almost a l l 

primes ft and l e t /t^ (G-) <. H 0 whenever ft <? 4* G . 

Then G i s completely decomposable i f and only i f G be

longs to some class Q and n.^CG) s rt CG Lft°°l ) for 

every prime ft with ft G -$» & . 

Proof* Remark at f i r s t that the conditions of theorem 

are necessary for the complete deeomposability of G . To 

verify their sufficiency we shall construct a suitable sub

group H in &. Let vt denote the type satisfying vtCfh)^ 

» co whenever ft G ** G and AK Cft) =f oo for every 

ft with ft, G 4- G j thus i f 0 #- x e G then >o. £ 

£ ty/ie tX . Consider a basis B - * C x t ( L € l ) J of G 

and take the subgroups 0, £ G ( t c l ) of rank 1 such 

that t^fic DL ** */t and ^ 6 J t ( t & I ) . If we define 

H • S O , then the factor group G / H i s torsion, 
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TT ( & / H > i s -finite and ft e TT ( G / H ) implies 

jpG^Cj. Thus for ftc TTCG/H ) we have n^CG) ** 

"r/tC&Lft*0!) . How in view of Theorem 5 we may state that 

G i s completely decomposable. 

Now we give another formulation of the preceding 

theorem. 

Theorem 5* . Let G he a torsion free group sa t i s 

fying a l l conditions of Theorem 5* Then the group G i s 

completely decomposable i f and only i f G belongs to so

me Baer's c lass Q, and tt (G/G Lft<* 1 ) ** 0 for each 

>ft€ TTCG/H) . 

Proof. By hypothesis, we have/t CCr)•<- H e whenever 

ft eTTCG/H).Sinoe n(GLft*°l) £ *tp,(& ) we conclude 

that /t (GLfi°°l ) •< M0 for .fi, e TT CG-/H ) . Thus, in view 

of Lemma 3f the condition ft CG/GLft°°l) m 0 i s equiva

lent to K^(&)** H. CGlfv^l) , and Theorem 5 may be applied. 

To conclude this note we mention one simple example. 

Example. If j i . i s a fixed prime then by RCfJt) we 

denote the additive group of a l l rationale with denomina

tors prime to -fl - Let U^ (m.« 4,2,*.* ) be an infinite 

sequence of groups satisfying Un -= R } Cm. ~47 £,•** ) and 

set Cx -» £ * U : thus G i s a ft -reduced torsion free 

group that ie a -d iv is ible for every prime g 4s ft . This 

means that 6 i s homogeneous of the same type as R/jr-% , By 
17*'/ 

IX%theorem 12.6 3 the group 6 is separable, therefore, e-

very its pure non sero subgroup of finite rank is a di-
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rect sum of f in i te ly many groups R ( f t ) . According to 

Corollary 3 and Lemma 1 we have tc. (&) - 0 , If 

ix Ct e I ) J i s a basis of G and i f we put Ĵ -» i*J& 

( u l ) and H » 21 J t y then H i s a homogeneous 

completely decomposable subgroup of G with torsion fu-

primary factor group G/H . Nevertheless, G i s not 

completely decomposable (see [lfTheorem 12.43) f therefore* 

in view of Theorem 1 G belongs to no Baer's c lass y • 

But f i r s t of a l l th is example shows that the Theorems l f 5 

and 9 in [ 6 ] do not hold i f the hypothesis on countabllity 

i s omitted* 
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