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Commentationes Mathematicae Universitatis Carolinae 

1(/.,2C1969) 

ON THE LIMITS OF THE POTENTIAL OP THE DOUBLE DISTRIBUT.1DN 

(Preliminary communication) 

JIM VESlLf f Fraha 

We identify the set of all finite complex numbers 

with the Euclidean plane E z • Let K be a rectifi-

a>ble curve in E 2 which is described by the complex-va

lued function y on a compact interval Co*, & > and 

let 

(1) * T 

(t1,tze<a,&>;0<lt1~tl\<Xr-ci)~>rtti)*r(V < 

For z, e E x 7 n, e C0;4--^o> we denote by ^ ^ the 

system of a l l components J of 

and by 0 ^ a fixed continuous branch of the 

&tq>CiirCt)~ oo 1 on J , J e 1£^ ^ . In case ft ** +- oo 

we shall skip tv in a l l symbols• Then we can define for 

z, e E2 

<2> *r/^)-*£ TA^Ce^-JJ, 

uK(x)m X ora^H^m-*'; J J -
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K K 
The functions tr (z>) , <u* (oo) are called cyclic and 

radial variations of K with respect to X, . They 

were studied in LI] and [2J in connection with the behavi

our of the logarithmic potential of the double distribu

tion* 

We shall describe the points in E$ by pairs 

[ 'X j ir J f where x e E 2 , tr e E..., . Let us denote 

H =* K x E c E^ and define the measure /td on H 

• • the product measure A x A of linear measures A 

on K and E 1 respectively* Because of the r e c t i -

f l a b i l i t y of K we can define the normal TV C f ) 

lir^t") m,Cf) - / n ^ C p + ^ f f ) , i- ( y C t ) / 

• t the point f - ijrCt) for A -almost every f e K . 

The normal %> C R.) at the point R 6 H with res 

pect to H (where R a C f ; i r J ) can be defined 

by V (R > m (m^ (f) j ^(f) , 0 ) . Then x> f R ) i» 

defined t̂t -almost everywhere on H -

I f C C H ) i s the Banach space of a l l bounded 

continuous functions F on H with the usual norm, 

R • C f ; or J , Q, ~ LK< AA,J 

(3) C C R , a > » r i f - . ^ | 1 + f*r-A6>*j" % 

or 
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(4) •GřR,Q)-a4-vГWř--^5S) t w ч r < M f t 

G ŕ R , Q ) = 0 f o г 1Ґ ^ ЛJ, 

we can define the functions W^ (F • fl) of C3 for 

every F € C C H ) by 

(5) W^(F}a)^/F(R)'^^Ld(xCR) . 

( Q CR , Q ) i s given by (3) or (4) . ) Our main ob

jective i s the existence of the limit 

/um,Wr(F;G) toT FcCCH), PeH * 
6}-»P 9 

Since the functions W^C F ; Q ) have similar proper

t i e s ! we denote them by the same symbol and the following 

theorem i s valid for both cases: 

Theorem Is Let P s [ f ; v J g H , S be a 

segment with end points P? R . Suppose that there 

exis t open spheres K ( P ) . K ( R ) with centers P, R 

respectively ao that for every R' e K C R ) the 

straight lina P R / and the set K ( P) n H have 

just one common point P • For the existence of 

(6) fyl W*(F-, ft) 

for every F c C C H ) the following conditions are ne

cessary and sufficient: 

- CO. 
K>> 0 

(7) Ąľ*CP) < + OO, *»P>*Ą"'H, (Í ^ + Ä > 
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•When both conditions (7) are fu l f i l l ed i t i s pos

sible, to express the limit (6) in the following way: 

for e^evy F € C C H ) we put 

(8) F ( ^ C f ) ? ^ ) = fCt,4t) 

and denote by C C &£ ) the Banach space of a l l con

tinuous functions f on 3K* <a,ir*> x £^ with 

the usual norm (in case y C a l s tyCJlr) we shall as

sume that f C a , x t ) = -fC^yce) for every AA, € £^ and 

f e C C 2C ) )• Then (8 ) determines an isometric i -

somorphism between C C H ) and C C 36 ) and we can 

define for every -f € C C9€) 

W^Cf ; Z,, AAs ) =r 

or by 

«rrCf ;*,-*> *-
(10) z 

Assuming (8) we have for fl.sCz;^J, lVyCF; 0,) ~ 

-» ttK C*f > .-&, <U> ) . Accordingly, we can study the l i 

mit of <urrCf ;Z,7AA>) instead of (6) . For P s Cf; ir J € 

e H the following theorem i s valid: 

Theorem 2: Assume (7) and suppose that y Cf) .= 

- f t I , f e CCVi) . 

If t0 ** a, (or £; -* -#- ) then there exists the 
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(oг 

and 

(or 

limit 

turn, w*(ti 9+p*»ty> * 9% V+pt^r') -

uniformly for f e <C <*,, o&2 >, < y ' e < /3 f , /3 a > , 

where oo < oc., ^ cx^ < cc i- 2 JT, - ̂  -*- /3f * /34 < j -

If a. -c t 0 <; .#• 7 then there exiat the l imits 

t-H+ l y c t ) - y r t i , ) | ^ •*" ' 

We can choose oc , oc so that oc 4 oc < oo + Iff 
-f ' -» -4- — 4-

and put A - ^T- Coc_ - oc^ ) • 

Then 
Hurrv 4Wtr(f', f + <p JUefv <i tf 7 V-hptg.'jr') m 

* i^^Cf ; f ,o^)-f 2f r t ^ , ^ ) - c^r+ A ) 

uniformly for C T, X ' ) 6 FJ X F% , where F^ is any 

compact in C oCj, , oc_ ) 7 F^ i s any compact in 
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/ 1 I ) 
^ ^ c f ; ^ p % i r ; V+pt<frr') ~ 

- lir^-Fjf,^)- 2f r*0,*o- n r - A) 

uniformly for ( ^ y') e Fj ' x F\ ? where F ' i s 

any compact in (oc_ , t-C^. 4- 2JT), f7' i s any compact 

1 n f ~ I E TT * 

Similar r e su l t s can be obtained for the case when 

He= K x {CL^ 7 Us^ > 7 where < X£7 ., /O^ > is any com

pact interval in E . The proofs of theorems 1 and 2 

together with further re la ted r e s u l t s wi l l be published 

elsewhere. 
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