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Commentationes Mathematicae Universitatis Carolinae
10, 2 (1969)
OF THE LIMITS OF THE FOTENTIAL OF THE DOUBLE DISTRIBUTION
(Preliminary communication)
Ji¥t VESEL{, Praha

We identify the set of all finite complex numbers
with the Euclidesn plane E, . Let K be a rectifi-
able curve in E, which is described by the complex-va-
lued function ¥  on & compact interval <(a, & > and
let

(1)
(t,,t, € <a, #5,0<t~t, | <b-a)=>yt)+ ¥ (1) .

'l/‘a,/ttfzy; (a,¥r>]< +00 ,

For z € E n €(0,+00) we denote by U, , the

2 7
system of all components J of

{t;te <a, &>, 0<ly@®)-xl<n}

and by GZ » fixed continuous branch of the
argly(t)-x] on J, Je Y, ,.Incasen= +c0

we shall skip 2 in all symbols. Then we can define for

zxeE,

K 3
(2) %(Z)’J‘;%z”’“‘%[ex’ J1,

WKzye 5 wanllyctr-z1;TT.
(7 t
JeUn,x
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The functions v (z) , «X(x) are called cyelic and
radial variations of K  with respect to 2 . They

were studied in [1] and [2] in connection with the behavi-

our of the logarithmic potential of the double distribu-
tion.

We shall describe the points in E, by pairs

(x;2], where 2z € E,, v e E; . Let us denote

H=K x E1 c E.3 and define the measure («« on H

as the product messure A x A of linear measures A

on K and E,, respectively. Because of the recti-
fiability of K we cen define the normal m (§)

. . yw(t)
m(f) =m (C)+im,(§)= 1 Tw or

at the point § = ¥ (i) for A -almost every §f ¢ K.
The normal » (R) et the point R e H with res-
pect to H (where R= [ §; 7] ) can be defined
by » (R) =(m,(f), m,(f),0) . Then u(R) 1is
defined (& -almost everywhere on H .

Ir CC(H) is the Banach space of all bounded
continuous functions F on H  with the usual norm,

Rel[§f;v], @G=slz;ul
2 1~
(3) G(R,G)=T[If-z|*+ (v-s)?)]

or
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- _ -1 1§~z
(4)  G(R,@Q)=(u-v) enf Gii-r)) for v < &

G (R,Q)= 0 for v > i

we can define the functions WY (F; @) o @ for
every F € C(H) by

3G (R; Q)
Y ¥ . = . 2 i
(3 WY(F; Q) H/F(R) 55 Ry~ ¢ (R
( G(R,Q) is given by (3) or (4).) Our mein ob-

Jective is the existence of the limit

&W'(F;G) for Fe C(H), PeH -

Since the functions WY(F; Q) haeve similar proper-
ties, we denote them by the same symbol and the following
theorem is valid for both cases:

Theoren 1: Let P=[f; v1eH, S bea
segment with end points P, R . Suppose that there
exist open spheres K (P), K (R) with centers P, R
respectively so thet for every R’ e K (R)) the
straight line PR’ and the set K(P)n H  have
Just one common point P . For the existence of

(6) dm, WY CF;6)

Qe S
for every Fe C(H) the following conditions are ne-

cessary and sufficient:
1 K
(7) arK(f)<+ao,mm My (£) < + 00
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*When both conditions (7) are fulfilled it is pos=—
sible, to express the limit (6) in the following way:
for every F € C (H) we put

(8) Fly(t),u)= f(t,«)

.and denote by C (¥€) the Banach space of all con-
tinuous functions on ¥=<a,&>~<E, with
the usual norm (in case ¥ (a)= ¥ (&) we shall as-
sume that f(a, &)= f(&,4L) for every 4 € E, and
£ € C(H) ). Then (8) determines an isometric i-
somorphism between C (H) and C (%) and we can
define for every f € C (&)
w WC‘F; 2, ) =

(9) +00 A - AL J
= (t,5)d d, 6, (t
_JGZ"z'J/'—/o"’.F "b)"’[(fb;(t)-l-(/b-u)")’/‘ 1d, & @)
or by
w¥f;z,u) =
(10)

* 2 () 10 90 ey
35& :/'L-F(t,/s)dh[—m(—,”u_b) id, & .

Assunming (8) we have for G =Lz;ul, WY(F;B) =

= w¥+ 52,4 ) . Accordingly, we can study the li=~
"mit of w¥(f;2,4) instead of (6). For P=[§; vJe
€ H the following theorem is valid:

Theorem 2: Assume (7) and suppose that 1//"4(;) =
={t}, fe C(FH).

If t, = a (or ft, = & ) then there exists the
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limit

Yy (t) - y (@) - .

tya, lyt)-y) wp v
(or Yit) — yib) ) )

talr  yt) - y()| o oo
and ,

Liomy w”(f;f-;—;ow»tg’, v+ ptgy ) =

P20

= w¥f; §,v)+2f (@) (T+ox-7)
(or

Lo wv(-F; §‘+;0W¢7, ’V+pt9,g~’) =
a4
= w¥¥; §‘,v)+24(-6;'v')-(7'-ao-;rr) h)

unifornly for ¥ € <ot , 00, >, ¥ € & By; By >

where o0 < X; £ X, < & + 237-,-%4/514/32<%’:.
If a < t, < &, then there exist the limits
o WE) =Y CE)
P Twer—woear = %
o, WE) = Y (E) Do .
tot_ Iy (t) - y ()l e
We can choose of_ , o so that oo, & o€_ <ot + 2
and put A = - (o_ - +).
Then . . ,
s wl(f; f+oupiy, veptgyr’) =
+

= w¥t; )+ 280t ,v) . T+ A)

uniformly for (7, ') e F x F, , where F, is any

F,
F'

compact in (o, , &_), F, 1is any compact in
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o T
(-7
14'173, w'({l;fi—go!x,fz’ig*, 1r+;atg,9~’) =

+

)

=w¥;§,»)- 2€(¢t,,2)- (M- A)

unifornly for (y, ¥’) e B’ x le , where F7 is

any compact in (oc_ , o + 2r), Fz' is any compact
in ("127_: 9 %r- )

.

Similar results can be obtained for the case when

Hy= K> <«,, w, )  where (4, ,4,> is any com-

pact interval in E The proofs of theorems 1 and 2

4
together with further related results will be published
elsewhere.
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