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STABLE GLOBAL ATTRACTORS in E 2 x ) 

Paul R. FALLONE Jr.,Storrs, Connecticut 

Introduction. In [1] and C2J topological results 

for a point-set study of dynamical systems in £ are 

obtained and utilized in stability study. Incidentally, 

Theorem 2 of [l] does not require property if for we 

may obtain desired sections from the following: Let 

( X 7 71 ) be a dynamical system on a locally compact 

(Hausdorff) space X and let X*=- X U icoJ , a) & X , 

denote the one-point compactification of X . Then there 

is a dynamical system (XM
7ar*) on X* with the pro

perty that jf^Cx, t) -* 3r(<x,t) for every .x e X 

and every t e J2> . 

Our results are in the notation of £33 and we re

call, in particular, that if M is a (positive) stable 

attractor (positively asymptotically stable) which is 

compact in a dynamical system on a Hausdorff space, then 

for each ,x in the region of attraction, A(M) , which 

is not in M we must have A"* (x) P! A (M) «• $ . 

x) The author was partially supported by the National 

Science Foundati •"> under Grant No. NSF-GE-7938. 
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Theorem* Let (£ jf) be a dynamical system on 

Euclidean 2-space and let M c E 2 be compact, inva

riant, (positively) stable, and a (positive) global 

( A C M ) * E 2 ) attractor. For each oc E {JciM one of 

the following holds: 

(i) x is a rest point; 

(ii) Jtf(x) is a simple closed curve; 

(iii) A" Cx) is a (non-empty) continuum of rest 

point8. 

Proof: Assume :x g. get M is such that x is 

not a rest point and qf (x ) is not a simple closed 

curve. BcLM is compact and invariant, hence, A""C/X. )4ff 

i* 0 and A"" (*0 ) C BcL M # Suppose Jp, £ A"(ocQ) 

is not a rest point. Let X be a transversal at yfv 

with associated *) > 0 7 i.e.,sr(*JLxi'bi)()2Lisr0 

for every 0 < It I -a ^ # Now T~(XQ ) bas a coun

table infinite number of intersections with £ * say 

i ^-1- ,- in order along *y~ Cx ) where c*^ =• 

- Tc Cv © ) and 0 > 6» > 0 > ... > 0 >.,. , 

0 > -H, 4 2 /t--

By assumption If* (*0) is not the complete trajectory 

through ,X- and, therefore, iXajT has a unique 

limit point <x in S and it is easy to see .x. m ft, 4 
OO CO ' 

Let , Cj^ , Jk, =*• 4, 2.5 3,..- denote the simple clo

sed curve consisting of arcs of y ~ 6 * 0 ) and X be

tween ,x- and *j^+A * Tben f^ ^ Cfc, for any Jt . Let 

G ^ Jfe*-» 4., 2., 3, .## be that component of E ^ Cj^ 
which contains ^v . For every 4t? ff^ is negatively 

590 



invariant and unbounded. To see the latter, suppose for 

^°0 ~^ ^> ^k is bounded. Since .fau € GjL and ^ 

is open in E ? there is a /y, 6 Gj^ 0 (E. N. M ) and 

y ~ (ty) c (x̂  is compact. Hence, A " (ty*) & 0 

but this is impossible since ty lies in EL \ M . 

Finally, X £ G^ for each Jk> £ A . Denote 

the bounded component of £ 2 V C ^ by J)^ , Then X e J>, y 

and there is a /y. e ( B2 \ M / fi J), such that 

A ^ ( ^ ) = 0 ; y ' f ^ > n G^ #= iẐ  for each Je, ~ 2 <?2,+- 4, 

rrt, * 0, 4, 2;... , and r'ty) H C ^ # f̂  for each 

Jk> ~ 2/YI + 'I, rrv- 07 4 j 2,..- . This means y"(^-) has 

an infinite number of intersections with X and that 

*fv £ A~(^> * 

Again this is impossible since n^ £ £ M M . Hen

ce, if /fi, e A~ (X ) ; then ft- is a rest point. Since 

* £ BoiM ; A " (»xrt ) is a (non-empty) continuum 
0 ' Q 

and the proof is complete. 

Corollary. Under the same hypothesis as the theo

rem, if BctM contains no rest points, M is topo

logical^ a closed 2-cell. 

Proof: For each ,x s, B d M f (x) is a 

simple closed curve by the theorem. But any continuum 

in the plane which is the disjoint union of (more than 

one) simple closed curves is topologically an annulus 

[4J. Therefore, &d M is a simple closed curve. Let 
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J> C be components of E2 \ B>cL M with C unboun

ded. Then D » M and the proof i s complete. 
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