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Commentationes Mathematicae Universitatis Carolinae

10, 4 (1969)

A COMBINATORTAL THEOREM ON THE EXISTENCE OF A
SEPARATING ELEMENT AND ITS APPLICATIONS TO SEQUENCES
AND 6 -DERIVATIONS OF MEASURES X’

Pavel UIHAK, Praha

In the present paper we start with a combinatorial
theorem on the existence of a separating element of a
¢ -complete Boolean élgeb:va for a set of measures. We
obtain immediately its applications to double sequences
and limits of integrals. In order to obtain more general
results, we introduce the notion of a 6-derivation of a
measure and a € -derivation of a set of measures. The
considered interpretation of the 6 -derivation of a
measure in the Stone space is not used in the following
main section. The purpose of this paper is to obtain so-
me results which are essential generalizations of well-
known theorems (Vitalli, Hahn, Saks and Nikodym) on se-
quences of measures and to present a combinatorial treat-
ment.
x) The theses of this paper have been communicated by the
author in January 1967 on the topological seminar in

Prague, directed by acad.Prof. M. Katé&tov.
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1. A combinatorial theorem and its applications

Let €L be a Boolean algebra (see [3]) with ope-
rations U ,M,~ .Let @ (%) be a set of all finite non-
negative additive functions defined on ¥4 .Elements of
the set a (L) will be called measures.

Let % be a filter of the Boolean algebra ¥L .
Define oh (w) =.imf{im(A);Acew] for mea (€L),

M(w) = infisup M(A); Acwifor M c a(@L),M+4,
where M(A) = {m (A);m € M} and &(w)zm{dﬁ(A);meMi,

Then it follows immediately:

(1.1) Lemma. 1° M(w) 2 M@r) > 0 for all Mc a (),
M#+g .

R 2° 1 M is a finite subset of a,(¢%) then M('ur) =
= M(w).

P12 M) > M) » M, is a finite subset
of My, M1= M=M, then Mq(zw—)= M () .

Proof. 1° If A € w then sup M(A) 2 sn(w) >0
for a1l m € M. Hence M(w) = MwrI> o .

o \
2" Let ¢ >0, M=4{m, ,m,,..., m, 3 ., Then there are

A
elements Ahe w such that fmh(A‘) £ M(w) 4+ € . Put

- 59 -



mn
A=A, - Ten Ae w,Ma £ supM@rsMurte.

Hence M@w) £ M (w). By T M(w) = M (w) .
3° Clearly h‘;u (w) £ h"l (w). If M, (w) < ‘\\é (w) then
there is A€ w such that sup M, (A) < M (w). But
M, is a finite set, %~ is a filter, hence there is
A,e w, A, c A such that sup My(A)) < M(w) .
We obtain M(w) £ sup M(A ) < M () , i.e. a con-
tradiction.
(1.2) An element E € €L is called to be geparating
for an infinite set M of measures iff there are two
infinite subsets M’ and M? of the set M such that
inf MI(EY > sup M2CE) .
(1.3) Theorem. Let ¥4 be a & -complete Boolean al-
gebra, Let w be a filter of L. Suppose M is a
nonvoid subset of the set a (€f) and oo > M (w) >
> 2Mw) (in particular, oo>h71(w)>o=l°1(»w—) ).
Then there exists a separating element E e L. for the
set M of a form E=ﬂg(Ah_4-A2m)5 A,ew, A,DA .,
for m=1,2,... .

Proof: Putd=M@wr), a,= ﬁ(w), E=% d-2d,) .

Hence £ > (0, There is an element A1 € w s8uch that
aup M(A ) £d +€ . PutM =M. There is a mea-
sure m, € M1 such that m, (A,, )2 d—-¢& . Since
v
m, (w)< d, there is A, 6 w, A, c A such
that m, (Az) £d, +¢€ .

Put M, = M = (m ). It follows from (1.1) that
v
Mytw) = M (o) = d , ete.

Putting M = M., = (m,_,) , weobtain
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\7
that M,n('ur)-e d . Hence there is m e M, such that

m”(A“)z d - €, Since ﬂ\;‘bm(flv') £ d , there is
A,"'M € w’ such thatA,,,C A,,.,; m, (A )< d, + €.
We obtain two infinite sequences:

A13A2:>.-.,A,,,,€’"f form=1,2, ... and
m,eM, m, *+m 6 for m% m’.

Now, put E = A,  —A,, for m=1,2,..., ,

o0 a0 ad
1 2_ R
E s/n&‘)y Em. ’ MT = {lm‘znoi ;;:»1 ? M"= {m.ﬁﬂgﬂu:»t -We obtain

the following inequalities:

m (E)Yz2m (E,))=m (A Y-m (AQW) =

2mn-1 2n-1 2m-1"" Im4 2m-1
2d-e-d-e=sd-d,-2¢, Ec(A-A, IUA,
m, (EY&m, (A)=-my, (A, )+m, (As,)éed+e-d+e+

+dove=cl, +3¢ .
Hence  imf M1(w)-supMiw)ad-2d,-5e =€ >0 .

Now we intend to show how the theorem (1.3) on the
existence of a separating element E can be applied to
a double sequence lemma and to a limit of integrals lem-

a3 d=102,0 , R=4,2,..)
be a double sequence of nonnegative numbers. Suppose
sufy £é4eéh 54=1,2,..% < oo,
é% €4 exists for A =1,2,... .
Then

(1.4) Lemma. Let (

<« a0
4%%«%’1& 21;4 ﬁ%’;ey'h :

Moreover, if }% “E‘:K €in exists for each subset K

of the set N of all positive integers, then
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o =
U ik = 5T %

m m
Proof. 1. Clearlyéwu’% %t 2’,%& e’-~=’"z1 _)__'de,-h
for all m € N . Hence the first inequality holds.
2. The second statement follows from the theorem
(1.3) if we put YL = axpp N, w the Fréchet fil-

ter of e N, M={rmjea.C%);ma-'[A)=Z{~e;-h;keA?
for each AecmN,g’.e N ¢ . We have fcﬂw)-—- o,

}%mé‘(’() exists for each K € een N and Mao) &
<00 . If M_(w) > ( then there is a separating
element E  which is impossible. Hence Mw) = o .
Let € > 0. Then there is an element A € w such that
sur M(A) £ € . There is a number m 6 N such that

A > {m+1,m+2,...].Hence
-] (-1 o0
y - Y = U o =~ v 0 &
fom Eenmd frnon = A e B e

o0
P-4 i tik =;§ L, Cin
(1.5) lLemma. Let A be a nonnegative finite 6 -addi-
tive measure on a & - complet field ¥ of subsets of

a nonvoid set X . Let {fn!f,:,, be a sequence of non-

negative A -integrable functions on X such that
{,— o A -almost everywhere on X and
A (£,) converges to a positive number ¥ for
m —> 00 .
Then there exists a separating element E € &
for M= {f . 7\.3:.1

does not converge for m —> 00 , where %E is the cha-

so that the sequence A (£, - %.)
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racteristic function of the set E .
Proof. Let & be a positive number, €A (X)<
< 77.Put By ={xeX;f (x)¢ € forall m>kj,

Ap= X = By, for ke N. Clearly, Ay > A+
A A= AR Ay)= 0, A(£,1p,) € £ A (By) £ €-2(X)
for m >k, (£, Ay )= A=A, L) = A(H,)-

~EA(X) for m 2 & .
Put my =, A, M=4m, 3’ = w=AA }S , . Then

Mcalll), m, (A) 2 A£)-€ A(X) form 2k,
rup M(AL)2 #- €2 (X) for all ke N, co>Ma)>

>Y-€:A(X)>0, s, (w)=o0 forell meN ,

ﬁ(w’)= o .. By the theorem (1.3) there exists a separa-
ting element E € X for M. Hence Alf, A, )= my (E)
does not converge for m —» oo

(1.6) Note. If, moreover, X 1is a topological space,

A is a Borel measure and ﬁn_ are continuous func-
tions, then Ay are open sets and theorem (1.3) implies
that E is of a form E 'hg (Ajg.; =~ A2s ) where

A:k is a subsequence of the sequence Ak .

(1.7) Examples. Let A be the Lebesgue s measure on
the interval X = <0,1)> .

o
1° Let £,

=M. o4 for each me N. Then £ —>
—>0 A~ a.€e and A($,)=1 for each m € N,

By the lemma (1.5) there exists a sequence ta, ?::,4

of numbers of the interval (0, 1 » which converges

monotonic to zero, such that the set
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E = L_) (a.”. » Yoy > is a separating element for

M=<f - 2.]:"’4 . Hence the sequence A (f, - %)
does not converge for m —» cO .
2° Let fn(.x') = 2 . V—# e'"""‘a for each

meN.Ten f,—0 A-a-e, A, )—> 1
for m —> oo . Hence by (1.5) there exists a separating
element E of the previous form.

(1.8) Corollary. Suppose A is a honnegative finite

& -additive measure on a 6 -complete field of

subsets of a nonvoid set X, {fn}:;,, is a sequence of

nonnegative A -integrable functions on X such that
f,—> o0 A - almost everywhere on X and
2'(4,"‘ - X. ) converges to a finite number for

m —>oo for each E € ¥ .

Then fim X (£.) = o .
m ~¥ oo

2. 6 -derivation of measures

Let YL be a Boolean algebra. Let O be a zero
element of UL, Let W, be a set of all filters (all
bases for all filters) such that each element w- €& W,
has a countable basis and

N{A; AewY=0 .

Put W,IE = {w eW,; Ee w ¥ for each
E e ¥ .Clearly W, IE, cW IE, ¢ W, for E ,
E,e@l, E cE,
(2.1) Definition. 1° Let m € a (¢).Put 3m (E) =
=nup {hw)wew,|ES for all E € ¢4 and |Om|=0m(-0).
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Then the nonnegative function Om defined on
€ will be called the 6 -derivation of the meas’ure m.

2° Let M be a nonvoid subset of the set a(¢l).
Put OM(E) =sup{M (w);weW,IE} for all E e €4
and [@M| =dM(-0).

Then' the nonnegative function d M defined on
©l will be called the 6 -derivation of the set M of
measures.

If we prove that the 6 -derivation Om is
an element of a (¥L) then we can define the second & -
derivation d2m of the measure m :

Pm = §dm) .
(2.2) Theorem. Let m € a(?¥L).Then

1° oéamémz,,
2° Om € a (N) ,

3° m is a @ -additive function on the subal-
gebra YL|E if and only if Om(E)= o for E € YL ,

4° %m = Om .

Proof. 1° If we W, | E  then Eew, 0=
cm(w) £ m(E) for Ee €L .

o -

2° Suppose E1, Eae e, E.,‘nE,_— 0 .
Ifw; € W,IE; fori=1,2 thenw={A UA,;A€ew;,

i=1,2} e W,1E, UE, and o () + an (g ) £ an () &

< 3dm (E, U Ez)‘ Hence
9m CE,) + dm (E,) £ dm (E,UE,) .
IfweW |E UE, thenw;=awlE 6 WIE for i=1,2

nn



and  Om (E )+ Om (E,) 2 m(uw) +mn () 2 m (w) .
Hence
Sm (E,) + 8m (E,) 29m (E UE,) .
3° If the measure m is 6 -additive on € IE
then m(w)=o0 for all we W, E . Hence dm (E)=o0.
On the other hand, let dm (E)= O and let

‘LE"_.?:” be a disjoint family of elements of ¢t!E ,
o0 ©0
such that (UJE, exists in YLIE. Then w:i(;',}mE*f

€
msq

éW 1E  and

o0

. oo 00

0=0m (E)=an(w)s himy m(U Ep)=m (U E) 43 m (Ey).
4° put n = Jm., It is sufficient to show that

ﬁ(w) 2 (w) for all wre W, , since 89 «om by 1°.

If Acwe W, then %(A)=Im (A)=pup{maug)uye W, 1A,

But w € W,|A . Hence dm (A)2 ™ ),
Nw)= if{Om (A)y Acw } 2 sh (w), 97 2 Im .

(2.3) Lemma. Let me a (). Thenm -0 m e a(¥t),

m -Om is a 6 -additive measure having the following
property:
if&ea(‘&i),.hém, L= o then L £ m ~dm.,

Proof. d(m-Om)=dm-dm = a by (2.2, 4°),

hence m -Jm is a 6 -additive element of o (¢L) by
(2.2,1°) and (2.2,3%).

If Ee Y then A(w)=o, ACE)= A(E)- A=
=sup AA(E-A);, Acwie pupim(E~A); A€ wi=m(E)-mn (w)

for all we W, |E . Hence A(E) % m (E)-supioh e);
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w e WolE.}=rm(E)—3m(E), A<Lm-Im .

(z.4) Theorem. Let M be a nonvoid subset of a (¢t).

Then 1° o= IM < sup M,

2° OM(E,)+OM(E,) = IM(E, U E, ) for
E,,E e L.

3° The measures of M are evenly 6 -additive
on LI E if and only if JIM(E)=o for E e €L .

Proof. 1° If Aeweh,|E theno=sup M(A) £

£ puppM(E). Hence
o< M(w)£sup M(E), IM(E) = sup MCE) .
2® letwe W, IE UE, . Putw; = wlE; fori=1,2.
If A1e W, , A, € w; then there is A€ 2w such
that A, > AN E; for ¢ = 1,2 . Hence
mapy MCA )+ sup M(A,)) = pup M(ANE)+
trup MCANE,) = sup M(A)?—‘M('w-),
Meaw )+ M) = M) |
OM(E,)+OM(E,) = OM(E UE,) .
3° Suppose Ee U, IM(E) = o and {E'h}:"f

is a disjoint subfemily of €L IE . Put

Ap=U{E, s =m,m+ 1,..3,w=1A 17  .Then w e W,IE,

o

M(w)= 0 . Hence if £ > 0 then there is & number
m & N such that sup M(A, ) = £, i.e.

mn-1
m (ULEg 5 S 2 11 -2 m (Ep)=m(UlEg s Je 2 m3)=m A, )£ €
for all /m € M , Hence the measures of M are evenly

6" ~additive.



Conversely, suppose the measures of M are e-
venly 6 -additive on Y (E and we W,lE. Put

A - oo . }
E,=A,-A.,, , where {A 3% _ is a countable mo

notone basis for w .

Then {E.ki;:” is a disjoint subfamily of TIE

(-]
&L;}4 E,& = A4 . If € > 0 then there is a number

m € N such that

-1
m (U4 E‘k 2 43)-:%mCE&)é & for allom & M. Hence

m=1
m(A,) =m(A)Z(m(A, )£ E for all m s M,
M('w—5=o, AM(E)= o .

3. Interpretation of 6 -derivations in the Stone
space
et X be the Stone space of a Boolean algebra ¥£.

Let v be the natural isomorphism on YL into e X .
Put &' ={A'=h(A); AeCL.

(3.1) Lemma. Let m e a(€L).Put m’(A’)=m(A) for all
A" = Jn(A),Ae € . Then m'e a (¥%’) and |1dm | =0 .

Hence the measure mm’ is 6 -additive on the field €¢L’.

Proof. Let w’ be a filter of YL’ which has a

countable basis and void intersection in the Stone spa-
ce X, Then @ ¢ w’, m/(w’) = o since each ele-
ment of awr’ is compact. Hence |dm’| = o .

(3.2) Let ¥ be a & -field of all Borel subsets of

the Stone space X . Let m &€ a (7). Then the measure m’
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has one and only one 4 -additive extension on X (by
Hehn s theorem [1]).
(3.3) Theorem. Let o’ be a map from W, to ¥ such
that h/(w)=N{h(A); A€ w3 for each w € W,

Let @ =4{D=M"(w); w e W, 3. Then

1° Om (E)= »up{m(D);De D, D c A (E)3 for
Ee .

2° Each set D e & is closed and nowhere dense
in X .

Proof. 1°w ¢ W, IE if and only if D =f'(w)C
c M (E) for E € ¥f . Hence
M) =imf{m (A); Ae w § = imf {mTA"); A’ =h(A), Ae wi=m1D)
(by (3.2)).

2° 1f Ajeel’, A, cD=h'(w), weW, then
A, =4 "CA/)c Nw . Hence A,=0,A =g and
D is nowhere dense.
(3.4) Example. Let L =eep N, 1et BN be the Cech-
Stone compactification of N , let N¥= BN=<N eand
let mea (). Then Im(CE)= m'CE’ N N*) for
each E'’= h(E), Ee € .

Proof. Let w; be the Fréchet filter of €L . Sin-
ce each filter wre W, | E minorizes the filter w5 | E |

we get m(w) < m(w, |E) .
Hence Om (E)= onuy | E)=m/'(h’ (wy | E)=m (E'‘N N*).

Now, we want to obtain some analogous results in a

more general case.
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(3.5) Theorem.Let ¥ be an atomic Boolean algebra.
Let m 6 @ (¥/).Then there is a meager subset Y of X,
Yec UD such that Om (E)=m/CE‘NY) for
each E‘= M(E), E e €.

Proof. Since ¥L is atomic,D’U D“e D for D',
D” € D . Hence there is a sequence {1, § of elements

of O such thatDc D, c:...,laml—,% £ m’(D, )

for each m € N . Since the measure m’ is 6'-additive,

we get | dm | =m/(Y) ,where Y=“g_'DM_ , From (3.3) fol-

lows that the set Y is meager in X .
Now let E € ¢ . Clearly the number £€=3m (E)-
-m/(E‘NY) is positive or zero. If € > ( then the-

re is an element D, e such that Im(E)-g<m'(D),

D, c E'. 1t follows that
m' (D, = Y)2 m/(D)-m/(E‘0Y) > O . Hence
’3ml=‘-m%m'(DmUJ)°)=m'(\/UDc)-m’(y)+m’(12,—'-Y)>
>m'(Y) = |om] ,
which 1is a contradiction. Hence .

Om(E) = m/CE‘NY) .

(3.6) Theorem. Let ¥/ be a 6 '-complete Boolean algebra
and let m € a (¢L).Then there exists a sequence of e-
lements Z, € €L such that

240 Zy,, ,Om(Z)=10m], m(Z)-0m(Z) < fa
for all kR € N. If Y-‘éh(zk) then Y is a clo-
sed Gd" subset of the Stone space X and dm (E) =
=m/(E‘’NY) for each E e ¥4, E = h(E) .



Proof. Let {%3:,4 be a sequence such that 2y, €

o0
ew,, 10mi-% < mcw,> . 1tAew, 2= 04,

then |9dm | = a/m,(Z)’ omEZ)=o. Indeed, let
M CWOI-Z, Then %z{BuA; Bew, Ae %}e h{’

for allm, and M, )= M) +sh@ws,), 0% mw)=hlu,) -

-n‘;t(%)élaml*-,%-lamvl- ,% . Hence
m)=o0, 0mEZ)=o0,0m(Z)=10m|-0m(-Z).
Now, choose An‘ké w;, such that ‘IA,,,’“_B,:’__4 is

. v 1
a monotone basis for a, andm(/\%k)’—'m(u;.’) + 2R

for all m, &k e N .
Put zk.’nQAn,k7 E,n),‘,-/‘\m",._--A,»‘.’M for allm,keN.
Then
0
dm (- Z,)=0, 5, m(E, )= "
a0 a0

=M(An,h)'”¥"(%)é#i ’ &«=ﬂbg »iL.)h E"‘a"" ?
e o0 & 1
EEmEn 2.5, Tom = gk

-4

<L 1
Hence oém(&)-&m(&) é"uz1 i;um(Eﬂ,i)éfu for all
& e N. '

Now, let E € €, E’= 4 (E) . By Theorem (2.2)
m-9Omea(?l) . Hence 0o£m(ENZE, )-Om(ENZ, )% gj;,

4

S m A, )-mA,

for each keN,0£m EMn(Z,)) -dm (E) & i

for each &, Using @ -additivity of m’ we obtain an e-
quality: m/(E‘0Y)=9m(E), m'(Y)=13ml .
The set Y 1is an intersection of a countable family of

clopen sets, hence closed and G,

- RNR
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4. Sequences of measures

In this section we present applications of the
theorem on existence of a separating element to se-
quences of measures,

(4.1) Definition. Let ¥ be a Boolean algebra. A se-

]w

neq Of measures m, € a (L) conver-

quence {m,

ges to a measure f e a (TL) iff tim m, (A)= n(A)

for each A € ¥ .(This property will be denoted by the
symbol m,, — 4V .)
(4.2) Lemma. Let m — o, let M={im ;meN? and
let w be a filter of Y. Then
1° A (w) € Mw) .
2° 12 Mew)&fiw) then fiw)= M@ .
3° If the Boolean algebra YL is 6 -complete then
A
M) £ 20 M (awr) and fi (w) £ 2. Tm shGwr)
Proof. 1° If ¢ > () then there is A € w such
that m,, (A)= M(w)+ £ for all m € N . Hence
£ ur) £ p(AY= L m,, (A) & M@+ €, ftur) < Maw) -
2° If € >0 then there is A € w such that

pA)<fiaw)+& . Since m (A)—> n(A) there is m €
e N such that m (A)& fi(w)+ € for allm >m,,
From the inequality ﬁ(w)é»ﬁ(w) it follows that
there is A1e w, A1 c A such that m“(A1) <

£ fi(w)+ € for m=1,2,...,m, . Hence

M) £ pup MA DEfa)rE, Mw) €4 (wr) -

3° 1r 2-ﬁ(w)<m0ur) then by Theorem (1.3)



there exists a separating element E in the 6 -complete

Boolean algebra X .But m, (E)—> f(E),which is a con-

tradiction. Hence M(ar)= 2-M(w) . Put M =1im,; i =m?

for m € N . Clearly, Mﬂ(rur) éz-ﬁﬂ(w) , hence 43 (w)<
A

£ M, (W)€ 2-M, ) =2pupp oy (w)  for all meN,

/ﬁ(’w)é 2 .m.% n;l.m(fw) .

(4.3) Lemma. Let ¢4 be a 6 -complete Boolean algebra, let
M be a sequentially compact nonvoid subset of a (¢L)
and let w~ be a filter of ¥4 with a countable basis. Then
Mcw) 2 2 Mcw) .

Proof. If there is a number d such that Z'M‘(w) <d<
<M(w) and if {A-h}::»t is a monotone basis for the fil=-
ter wr then the set M ={meM; ;m (A,) >d } is infi-
nite for each & € N . Indeed, if M, is finite set then
ﬁh(w)x ﬁh(w)‘ 9_[\71“ (w) , hence there is a set A e w,

.
A c A, such that sup M, (A)< d . Then M(w) =
< supM(A)£d ,which 1is a contradiction.

Now choose m, & My . If M, = {zmk_; 17, 1is a sub-
sequence of the sequence imifu then sup M,(A,) =d
for each & € N . Hence Mofw)zd.>2-ﬂ(w)> 2-I\7I° (w) ,

Mo(w)>2- ﬂ‘,(w) .From Theorem (1.3) it follows that there
is a separating element in ¥4 for the set M, . Hence the
subsequence {m"i?f‘ 1 doea not converge and the set M

is not sequentially compact, which is a contradiction.
(4.4) Theorem. Let €% be a 6 —complete Boolean algebra.
Let L. be a nonvoid subset of a (¥X) such that/dLl=o0
and let M be a sequentially compact subset of a(¢L) (in

- 608 =



particular, let M be a sequence which converges). Sup-
pose m ) = 0 for each m € M and for each filter
w of €L such that L(w)=o .

Then for each € > 0 there 18 o> 0 such that
it Ee ¥t ,A(E)< 0© for allA e L, then m(E)<E
for all m € M .

Proof. If there is a number ¢ > (¢ and elements
E, € ¢ such that supL(Eg) < I”E and

mupy M(EQ)2 €, thenw=1Ag k7 e W,  where Ay=.GE;

and 0=18L1>L(w)> o . Hence M(w) =0 . From
lemma (4.3) it follows that Mw)< 2-M(w) | 1.e. M=
= 0 . Hence there is a number & ¢ N such that £ >
>suftM(AL)ZsuppyM(E, ) | which is a contradiction.
(4.4) Note. Theorem (4.4) is a generalization of a theo=-
rem due to Vitali, Haehn and Saks (see [1]) which is &
particular case of (4.4) for L. =(1),where A 1is a 6 -ad-
ditive measure.
(4.5) Theorem. Let Y4 be a 6 -complete Boolean algebra.
Let M be a nonvoid sequentially compact subset of a(?L)
and let E € ¢4 . Suppose Im(E)=0 for each m € M.
Then
OM(E)= o.

Proof. From lemma (4.3) it follows that M (w) <

£2.Maw) for each w € W, 1E . But Mw)=sup {sh ();

meM} £ pupidm(E);meMy =0 for each weW,|E .
Hence OM(E)=o .
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(4.6) Note. Using (4.4), (2.2) and (2.4) we obtain the
following statement:

If M 1is a sequentially compact subset of a (¢t)
such that each measure m e M is 6 =-additive then the
measures of M  are evenly 6 -additive.

(4.7) Theorem. Let ¥4 be a & =complete Boolean algebra,

let M={m 1° ~m, ea(¥) and let m, —> 1o. Then

OM(E) £ 2-supn {8m(E);meMi  and
Bp(EY€ 2* Wm 3m, (E) for each £ € ¢L .
oo

m-»
Proof. 1° From lemma (4.2) it follows that M () &«

=’.—2'h’>l(rur)-‘-2'/>«4a{arm(f.);mé M3% for each we W,IE.
Hence OM(E) £ 2-pup{dm(E);me M3 .

2° From (4.2) it follows that {i(w )% 2. lm s, (ur)z
m->oo

. Q-M% dm, (E), wre W,IE . Hence O.p (E) £

€ 2. lm Om,(E)for E e L .

(4.8) Note. Theorem (4.7) is a generalization of a theo-
rem due to Nikodym O.M., which is a particular case of
(4.7), when all measures m, ,m € N, are 6 -additive,
i.es |ldm | =0 for all m e N . Then from (4.7)itfci-
lows that fr and {nn“?:g‘, are evenly 6 -additive

measures.
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