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Commentationes Mathematicae Universitatis Carolinae 

10, 4 ( 1969 ) 

SOME NOTES ON THE CONVOLUTION SEMIGROUP OF PROBABILITIES 

ON A METRIC GROUP 

Josef 3T£PAN, Praha 

Summary: The present paper deals with probability 

measures, say P . on a complete separable metric abelian 

group such that there exists a nontrivial solution {4, of 

the equation P -= P * (tc . Such measures will be cha

racterized in Section 2. He shall make use of these re

sults in Section 3 finding extreme points of the closed 

convex hull of all translations of a probability measure 

P • Most of the methods which are used here are due to 

Parthasarathy [1967TJ. 

1* Introduction 

Let G be a complete separable metric abelian 

group. Let us consider the space M C (x) of all proba

bility measures which are defined on the (T-algebra <f$ 

of Borel subsets of Cx . The space M C Cr) la a commuta

tive semigroup under the operation of convolution (# ) 

which can be defined as 

P*fi(A) = fpCt-4A)QCdt) 

for any two P 9 ft 6 M C G ) and any A e db . Denote 

by fL the probability measure degenerated at a point 



q, € G . Then e^ is the identity and the only regu

lar element of M C G ) . 

Conaider the family of seta 

I * 1, 2, ... , m,3 

where f, .„• -fL are elements of C(G) and E :> 0 * 

Thi9 family ia a base for a topology of MCG-) which i s 

known as the weak topology. 

The space MCG-) in the weak topology i s a metr i -

zable topological semigroup (see C13) with the following 

proper t ies : 

1 .1 . Consider P € MCG) and 3) e MCG-) . Then the 

set P #• 55 i s r e l a t i ve ly compact i f and only i f the 

set 2) i s r e l a t i ve ly compact (see C1J-Chapter 111,2.1; 

C4.]> • 

Put DCP) -- c ? { F̂  : t e & j for each 

P e M C G ) , where the right-hand side i s the closed convex 

hul l of the set of t rans la t ions of RCfjCA) » PCi^A ) 

for t e G, A e fo ) . 

Then Csee [4.J J 

1.2. J ) ( P ) - : P * MCG) for every P e MCG) . 

The assertion is a not preciaely eaay consequence of the 

theorem on the eeparation of convex aets in linear topo

logical spaces (see tl2f V.III.10). 

2. Invariant probability measures 

Let us consider the ideal 3 c M C G ) ; d - iP e 

€ M C&): ?*?% (U- for some (A> e MC&) ? (tt + e. j . In 
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th is section we shall describe the elements of 0 * For 

any P e M (G) we denote by A~ the set Ap -

a t t e G j F £ ~ f j i . We shall say that the set A ? i s 

the maximal invariant set of the measure P <£ MCG) . 

Nowi we can prove the following 

2»1« Lemma. The maximal invariant set A p i s a compact 

subgroup of G for every P e M (&) . 

Proof. Take two points t 7 A? e Ap . Then for a-

ny A e d$ , we have 
^ C A J - ^ r ^ C ^ V A ) - ^ ^ ) - r}C*f</4)~ P*(A) = PCA) 

and £.„ CA> * l> Ct A) = % CtA) - PCA) . 

Hence Ap i s a subgroup. Further, i t i s obvious that Ap 

i s a closed set . To prove i t s compactness le t us consi

der a sequence itM}J° c Aft . Then P-* (3. « P *• e* . 

By 1.1 the sequence i 6x J^ i s relatively compact 
v<n, 1 

and by a well-known theorem due to Prochorov (see Theorem 

6.7tChapter II in [1J> there i s a compact set K c G such 

that e^ C K ) > -£ for a l l tn . Hence i t ^ ?~ c K and 

the set A» is compact. This completes the proof. 

In the case when & i s a complete separable metric 

group we can characterize idempotent elements of MCG-). 

It i s known that H1 « Jh for some Jh e M(G) just i f 

there i s a compact subgroup S c G such that J t i s the 

normalized Haar measure of S (M, (S) * 4 , M,^ « M,^ 

for t 6 S ) * 

Denote by CL the family of a l l compact subgroups S c Gf 

S 4= H i and by Jh the normalized Haar measure of S* 

Then {J> > S e d J c J holds and we shall show that 

the set on the l e f t side i s Ha base" for J # 
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The following lemma i s very important for our purposes. 

2*2. Lfimjsa. Suppose that P and (U> are elements of 

M C<x) such that /a, 4- 6 and P s P *+ (U, . Then the

re exists an S e CL, S c Ap such that p r P ^ i i ? 

ana (U CS) » 4 . 

Proof. Take P, j t i e M ( G ) ; ^ + £^ such 

that P » P * ( a , It implies that P «r P *. i ^ ., where 

^ = ^ 2 1 (U. for /n. «• 4, .2,... . By assertion 

1.1 the sequence* ^">-3n,^f n a s a n accumulation point 

Av e MCG) and P * P * iv holds. Consider the sub

sequence i*iL i c {-o } such that >L v ••» i t f 

then 

" V * 

(we have put H <£ I * Atcfe \*€ (A) \ 7 where ^ Is a 

set function on the 6* -algebra 6b ) 

which shows that \^ #• /U> -j-> Av and, consequent

ly , Av ** Av #• (U . Therefore we can write Av& Av *> >J, . 

Thus At * ^ ^ and A i s a normalized Haar measure on 

a compact subgroup S C (r . Prom the facts that Av -* 

-«/h.*(a, and /a- -*» 6^ we can easily deduce that Av 4s 

«f £, # Hence S e CL and ix. • A . Since 

-J - Jh,CS)~ fjh,(i-1$)p>Cdi)= £h<t~/'S)lu,(dt)-p.(S) 
G S 

and J*.* C P * ^ ^ » P * >h£« P * A » P f or f 6 S , 



the proof i s completed. 

2*3. Theorem. Let us suppose that G i s a complete se 

parable metric abelian group. Then 3 ~„UL D CAS ) 
Sed 

hold3. (We have employed the notation which waa introdu

ced in Section 1.) 

Proof. According to Lemma 2.2 and the remark l . £ 
we have J c LJ D (X\ ) . On the contrary, let us 

ScCt-
suppose that Pe T)(Jh,5)7 where S e d . Then, again 

by the remark 1.2, there exists a /tc such that P «• 

* JhS * M, . We can write P * h?~ (H*)1*^ ** M?* (u, * P 

and hence P e J as i i 4> £. , The proof i s completed. 
7 

The following assertion is an easy consequence of 

Theorem 2.3 and Corollary 6 in [5.1. 
2*4« Cprollar.v. Let us suppose that Pe J, Then P is 

an element of the ideal 3 if and only if there is S e 

€ d such that PC-P) ^ /XJUU Jh>S,C4ir) for each 
t € & 

feCCG) . 

(We have used the notation -PtCx) *-"P(i *•*) for t 7 

X e G •) 

A slight reformulation of Theorem 2.3 i s given in 

the following 

2 .5 . Theorem. Let & be a complete separable metric a-

belian group. Then P e M CG) i s an element of the ide

al 3 i f and only i f the maximal invariant set of P ; 

Ap , i s an element of CX CAP #- <4 J ) . It (4, € tA(G) 

i s such that P a P * /u, then (U,C/\ ) s i . 

Prgof. The second part of the theorem and the ne

cessity of the f irs t part follow easi ly from Lemma 2*2. 
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Conversely, let us suppose that /\ €. 0, . Then the

re is t e Ap f t 4* 4 f and if we put 

(U> m T[ C£ + £^) we have ^ 4 - e . , P -= P * rtc . 

This implies that P e 3 and the proof is completed. 

The theorem which was just proved implies 
2«6« Corollary. Suppose that G is a complete separab

le metric abelian group. Then the following statements 

are equivalent. 

A) J * 8 ; B) CI 4- & . 

C) The mapping P ; G — > M C G) does not separa-

te points of O for any P e M (G) * 

Elements of 3 have a simple description when O 

is a finite group: 
2»7» Theorem. Suppose that Or is a finite abelian group. 

Then P e 3 if and only if there exist a S e & such 

that 

(1) P C * * * ) - P « ^ j ) holds for any two X , 

Proof. Suppose Fed. It follows from 2.5 that 

A p e CL . Take o< , /y, e (f such that t - mnf e A p . 

Hence 

PC{*i)** P t ( U i ) - PC</^J) , 

Conversely, let S e & be a subgroup such that the 

condition (l) holds. Then we can write 

r^C-Cxi)-=PC<t^!)=rPC<«i) for each .(t?tx) e CSxG 

Therefore Ap D S 6 ft and i t follows from 2.5 that 

P e 3 . This completes the proof. 
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Now we shall examine the special case when G has 

a 6"-finite Haar measure Jh, ^^h" ^ f o r a 1 1 * e G ) . 

Denote \ = <Pe d: P 4 M,l , J& - -CPe 0 $ P ± Jh, I 

where P± Jhs s ignif ies the fact that the measure P 

i s .^-singular. We can prove the following "decomposi

t ion theorem": 

2 .8 . Theorem. Let G be a complete separable metric a-

belian group with a 5* - f in i te Haar measure Jin . Suppose 

P e J — (CI u OL)- Then there exists unique 

Coc,ft;R ) 6 C0,1)x J^x Js such that P-=-ccQ + (4-oc)R. 

Moreover, A = A„ n A„ holds. 

Proof. Consider P g J - ( ^ u Jg ) , Then 

Csee [2 ] ) there are nonnegative f in i te measures A ^ S 

which are defined on <8 such that 

(2) P - - A + S , A ^ J f v , S l J b ? A , S * ^ , 

The measures A ? S are uniquely determined. 

It i s quite clear that A ^ H for each t e G . Sin

ce S ± Jfo, ? there i s a C e <f& such that Jfo/ CO -» 0 

and 5 ( B o C c ) « ^ for a l l B e 43 . (We have deno

ted Cc » (j - C . ) Hence HCf* C ) •*• 0 and 

S t (B n(i"4C) f t) ~ S(t~1B n Ce ) - 0 for a l l B € di 

and t e G- . Thus S. ±. Jh, for every t e G . Therefo

re we have P =- f£ « A t + S t for each t e Ap • 

It follows from the uniqueness of the decomposition (2) 

that 

(S) At « A , 5^ = S for t e Ap . 

If we put ot a- A (G) then 0 < oc <c 4 and 



C4) P - oc ft + (1 - oc) R 

<X , * • - ^ . -OC 

rem 2.5 that Q e 0^, R € J$ and Ap c A^ n AR . 

The relation (4) implies that A^ n A R c Ap . 

The uniqueness of our decomposition i s an easy 

consequence of the fact that the. measures A 7 S in 

(2) are uniquely determined. The proof i s completed. 

It is quite easy to characterize elements of the 

set CL . 
CL 

2.S. Theorem. Let G be a complete separable metric a-

belian group with a 6* -finite Haar measure Jv . Then 

P 6 VQ, if and only if there is 5 e Ob such that 

^(4*;^£<^*> " dKC*)l)s* ° holdfl for each t e S * 

The assertion of the theorem is a consequence of 

Theorem 2.5 and Radon-Nikodim's theorem if we realize 

that 

dPt (ctP\t-1 

dh * {dh} tor -b e G- using the 

same notation as in Corollary 2 .4 . 

3 . j^rejie ppi^s gf ths aet J)CP) 

The aim of this section i s to find extreme points 

of the convex set 1)(P) =* c& -i & : t e G 3 . 

We shall have occasion to use the result of the section 

2. Denote by JUG A the set of extreme points of a con

vex set A . First of a l l we note that the space MfG*) 



with the weak topology can be topologically imbedded in 

to the space C*(G) of a l l continuous linear fulic-

tionals on C(G) with the weak*topology (see £3JfChap-

ter V). (By the Riesz reprezentation theorem we can con

sider elements of C*C&) as regular additive set func

tions on the algebra <r\ c <B which i s generated by 

a l l the open sets of & •) 

Denote the closure of a set A c C*(G) by A * • 

3 . 1 . Let K c G- be a compact se t . Then -i R s t € Ki 

and 5a"lF£ •- t e K} are compact subsets of C * CO) * 

To prove the assertion i t i s sufficient to show 

that both sets are compact in the weak topology of MCG-) 

and this i s an easy consequence of the relation (see MX 

(5) ^<% : t e Ki « <Q € MCG): Q - P-* jo, , where 

(U, e M (G) and ^ C K) -=r 4? . 

An easy consideration together with one of the con-

deque nces of Ereln-Milman theorem Csee I3J,V,8.5) shows 

us that 

3.2 VcwiP^ :te K J » <% : t e K I for each com

pact subgroup K c & . 

New we are able to prove the following theorem. 

3*3. Theorem. Let G be a complete separable metric abe-

lian group. Then the equality 

vc, PCp) m -CrJ : t e &? holds for every Pc MCfrX 

Proof. Have a P e MCG-). First of a l l we shall 
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show that P 6 vc J)(P) . Consider (oc, R?ft)e (0^)x 

x P ( P ) x B ( P ) such that P - oc R + (4 - oc ) ft . By 

1.2 there exist (U , ->> € MCG-) such that R « P*<a., 

A » P * ^ . Putting <7C(a + ( 1 - o O a ) » i£ we can 

write P - P * 7i . It follows from Lemma 2.2 that the

re i s a compact subgroup S c G such that ^ C S ) » 4 . 

Hence ^a, CS) -» >> CS) -=• 4 and according to (5) we can 

see that P 9 ft , R e E& iPt : t e 5 } . It follows 

from 3.2 that P i s an extreme point of the set 

e ? { r j ; t e S 3 and hence P -» ft - R . Therefore P € 

€ 4JC PC P) . Now, an easy consideration wil l show that 

{ P ^ t e & l c ^ K P ) . Let us prove that <x,$(P)c 

c { P ; t 6 Gi.The set DC?)* i s a closed bounded subset 

of C*CG-) • Thus £ ( P ) * i s weakly compact (see T30, 

V. 4 . 2 ) . 

Therefore by Krein-Milman theorem 

f6) **WCP)* c f l ^ . , , 1 * 

Take ft € es, DCP) and consider Cot, £ , ^ 2 ) € Co,4)>«: 

xDCP)*X DC?)* such that ft « ac/t^ + C4- oc ) / ^ (this 

means that ft C B ) • oc /* CB )+ (4 - at ) ^ C B ) for a l l 

B e <Q0 ) . Since ftCB) .^oc/t^ CB), ftCB).£ M - o O ^ C B ) 

for a l l B « fl0) the set functions /*,, Ci == 4,-2 ) are 

0* -additive on <80 , Therefore they have extensions to 

the & -algetra <fh . Denote them R̂  m R„ . Obviously 
R1» R a 6 -><P> and P<A)-ooR1CA)+C1-cc)RaCA> 

holds for each A € <f$ . It follows from our assumption 



(Q> € &t V (P )) that R^ * Rz and consequently 

/C m fc„ .Therefore we have flce^DCP)* , 
i 2> 

According to (6) and the fact that (3 e MCG) i t i s 

clear that Q e i?t : t e G3.Since MCG) i s a metrizab-

le topological semigroup, there exists a sequence i%Jc 

C G such that E -» P * £. •-» A „ It follow® 
from 1.1 that the sequence is,. }°° i s relat ively corn

s'?* 1 
pact. Using the same argument as that in the proof of Lem

ma 2.1 we can show that the sequence it^l™ i s r e l a t i 

vely compact. Hence ft = r̂  for each accumulation point 

t0 of the sequence it^}** . Therefore fte I P : t e Gi 

and the proof i s completed. 
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