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Commentationes Mathematicae Universitatis Carolinae

11,1 (1970)

GENERALIZED CONCENTRATIVE MAPPINGS AND THEIR FIXED
POINTS

Josef DANES, Praha

0. Introduction. The notion of the measure of non-
compactnegs was introduced by G. Darbo [7] and Sadovskii
[13]). By means of this notion G. Darbo defined a .k -set-
contraction and Sadovskii a concentrajtive mapping. Darbo
and .Sadovskii proved for their classes of mappings the fix-
ed point theorems.We observe that the Sadovekii s class of map-
pings is broader than the Darbo’s one. But the sum of a
completely continuous mapping and a .k -contraction is the
A -set-contraction of Darbo [7]. Hence the most impor-
tant case is already covered by Darbo (implicitly). Let
us note that the classes C3 R) (052 & < 1)
and C,' of Frum-Ketkov (8] are near to that of Darbo.

Further development of concentrative mappings (resp.
M -set-contractions) is contained in Badoev, Sedovskii
[2), Borisovi¥, Sepronov [3], Daned [4,5,6], and Nussbaum
{12). Index and rotation notions for this class of map-
pings are developed in [3, 12]1. The notion of a genera-
lized concentrative mapping was introduced by Lifdic -

Sadovskii in [11], and in more general fashion in our
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report [6] 1,

The purpose of the present paper is to introduce
o¢ -generalized concentrative mappings in a topologi-
Vcal space and to prove fixed point theorems for such
mappings. Our point of departure is [5,Th.1] which hy-
potheses are very near to the definition of a generali-~
zed concentrative mapping.

In Section 1 we introduce notation and defini-
tions. Some simple and well-known lemmas are given. Sec-
tion 2 deals wigh o¢ ~generalized concentrative mappings.

Fixed point theorems are contained in Section 3.

1. Notations and definitions. R and € deno-
tes the field of real and compYéx numbers, resp. For X

a set, we denote by expp X the set of all subsets of X
and by 2% the set of all non-empty subsets of X .
1) (January 9,1970): Further results are contained in
"Problemy matematifeskogo analiza sloZfnych sistem", vyp.
2, 1968, Voronef which was sent to me by B.N. Sadovskii:

V.A. Bondarenko: On the existence of the universal
measure of non-compactness, pp.18-21;

G.M. Vainikko, B.N. Sadovekii: On rotation of con-
centrative vector fields,pp.84-88;

B.N. Sadovskii: On measures of non-compactness and‘

concentrative operators, PP.89~119.
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If X is a topological space, then e¢fM and M de-
note the closure of M in X .If X is a linear space
(over R or € ), then coM, con M, aff M, A M
denote the convex, cone, affine, linear hull of the
subset M of X  resp. For X a topological linear
space (over R or € ), the operations @ , Tn,
o, AR  are defined by & = cl co, &n =cleom,
aff = L aff, Ap = L op .

Let (X,d) be a pseudometric space and M s
subset of X . Let B(M,€) denote the closed ¢ ~ball
at the set M i.e.B(M,€)={xe X : nupid (x,y):

iy € M1 &£ € ? . The measure of non-compactness
of the set M in X is defined by
AM) = inf G (M) (inff = + c0) ,
where
Q@M)={eecR: >0 and there is a fini-
te €-net for M in X ,i.e. B(6,eY>M for some
finite subset 6 of XJ .
If M,N are subsets of X and M is bounded and N
non-empty, we define
D(M,N)= inf{eeRs €>0,B(N,e)oM3.
If M and N are both bounded and non-empty, let
d, M, N) = max {9 (M, N), B (N,M)}
be the Hausdorff distance between M and N .
The following lemmas are easy to prove:
Lemma 1. Let (‘X,d.) be a pseudometric apac?
and M a subset of X .Then
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1) gM)=inffeeR : € >0 and there is a
compact subset K of X
with B(K,e)o M3 =

=imf{eeR: € >0 and there is a
precompact subset P of X
. with B(P, £€) oM#=
=mf{PM,6) : 6 a finite subset
of X%,
(2) M is precompact if and only if 2 (M) = 0 ;
(3) M is bounded if and only i (M) < + 00 ;
(4) if 9t is a subset of ecft X, then X (U 77) 2
> pup X (W)
(5) if 771 is a finite subset of exfr X , then
A(UWL) = mup x, (7) ;
(6) if M c N € exfp X , then XMYE X (N)
A7) MY £ B M N) + x (N) for allM,N cexp X;
® 1L (MY=~2(N)I £ d, (M,N) for all bounded
non-empty subsets M, N of X
(9) the measure of non-compactness X, () is continuous
on the pseudometric space (B(X), dH ) of all non-empty
bounded subsets of X .
Lemma 2, Let (X, ll-ll) be a psendonormed spa-
ce (over R or € ) and M ana /N subsets of X .
ThenA
(1) x(am-.-mn(,(m for all A € R (resp.

Ae€), A %0,

(2) mav{gM) (N} £ M+N) £ 3 (M)+xN);
(3) M) =x(TM).
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2. Generalized concentrative mappings

Definition 1. Let (X,o) and (Y,e) be pseu-
dometric spaces and  a subset of X . Then a mapping
f: C — Y is called concentrative, if ¢ satisfies
the following two conditions:

(1) f is continuous;

(2) if M is a bounded non-precompact subset of

X, i.e.
0 <X, (M)< + 00, then f, (F(IMN< (M)
The following two lemmas are obvious. )

Lemma 3. Let (X,d) and (Y,e) be pseudomet-
ric spaces, C a subset of X and £: C — Y a map-
pinge Suppose that one of the following conditions is sa-
tisfied:

(1) £ ie continuous and maps bounded subsets of
C onto pre-compact subsets of ¥ ;

(1°) 4 1is continuous and f(C) is precompact;

(2) ¥ is a A-contraction fO £ k<1),i.e.

e (f(x),f iy & d(x,y) for X,y €Cl;

t-2>¢c=Cutc, , ¢ is continous on C,
maps bounded subsets of C, onto precompact subsets of Y
end is a M -contractionon C, (0 £ ke < 1) .

Then £ is a concentrative mapping (even, A& -con-
centrative, i.e. x,e('F(M N ék?(,d (M) for bounded
subsets M of C ).

Lemma 4. Let (X,d ) be a pseudometric space,
(Y, 8- 1) a pseudonormed space and C a subset of

X . Suppose that ¥ and g are mappings on C into
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Y such that

(1) § 1is continuous and maps bounded subsets of
C onto precompact subsets of Y ;

(2) g is a h -contraction (0 & k< 1), i.e.

lg (x)-g(y)l & fed(x,n) for x, 4 €C .

Then (f +¢): C — ¥ is a concentrative
mapping of C into Y (even, a Jfe -concentrative map-
ping). (This was pointed out by Sadovskii [13].)

Definition 2. Let X be a set and ot a set-to-
set mapping defined on all subsets of X , i.e.

eep X —> eep X , such that:
(1) € ¢ oc ( & is extensive), i.e. iM= Mcax M

for all M € eenp X
(2) tox = ¢ ( oc is idempotent), i.e.ot(XM)=ax M
for all M € exp X
(3) o¢ is monotone, i.e. M c ok N for all M c
cNecX.
Then o< is called a ¢ -closure on ‘the set X .
A subset M of X is called oc -closed, ifcM =M,
Examples. (1) Let X be a set and ¥ a system
of subsets of X with X € &. For Me expp X ,1let
K M)=N{Se¥:S5S>M},.
Clearly, <X, is extensive and monotone. If S, o M ,
S, €Y, then %, (M)c 5, sinceS e {56 S SoM3.

Hence

o, (M) x (£, (MY) .
» M) o o » M)
Since the inverse inclusion follows from the extensivi-

ty and the monotonicity of ccy 5 ‘xy is idempotent.
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Thus, acy is a € -closure on. X .

(2) Let X be a set, P a subset-of X and 8
a ¢ ~-closure on X .For M € exp X , 1let

aM = B(PUM) .

Then we have:
aM =B(PUMISPUM oM  for all M et X,
alxM)= B(PU B(PUMN=B(R(PUM))=RB(PUM)=a M
for all Me eep X -
It M,Neeep X and Mc N, then MUPc NuU P,

and hence

aM=B(PUMcB(INUP)=aN.

Thus, oc is a ¢ -closure on X .
(3) Let X and Y be sets, 3 a ¢ -closure on
Y and f a mapping on X into Y such that Gf_Lidy.
For Me expp X, 1let
xM = 7@ EM)) .
Then, for M, Neexp X; M c N , we have succes-

sively,

BEMNS£(M), «M=¢TeEMMse'eMNoO M,
% M) =R EE MMM = £ EEEM N =
=flpeEmn = aM,
FMYcFN), BEMDc BEINY, cM=F(B(f (M) c
ci""((s $#(N)) = &N .

Thus, ¢ is a ¢ -closure on X .

(4) Let X be a set and let 3 and ¥ be € -clo-
sures on X such that o /3 ¥ =37, i""?’(ﬂ(f(M)”‘
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= B(y¥(M) for all M € exp X . It is easy to see
that o« = B isa ¢ -closure on X (the idempo-
tency of oc follows from 2By =37 ).

(5) Let X be a linear space. For M € exp X
we define:

cor M = the convex hull of M ;

cmnM={xeX:x=tm meM,teR,t= 03 ;
aff M = the affine hull of M ;
/M = the linear hull (span) of M .

Then co, con, aff, s are c-closures on X .

(6) Let X be a topological space. Then its closu-
re operation e¢f is a c¢-closure on X .

(7) Let X be a linear topological space. By (4-6),
¢ = ¢l coo = the closed convex hull,éon = c¢lcomn =
= the closed cone hull, aff = ¢l aff = the closed af-
fine hull, sfs = ¢f Hp = the closed linear hull, are
¢ -closures on X .

(8) Let X be a pseudometric aspace and, for M €
eep X ,let

oM =N{B : B a ball (closed) in X, B o M}.
By (1), o is a ¢ ~closure on X .

Lemma 5. Let X be a set and oc a ¢ -closure
on X . Then:

(1) 1f 9% is a non-empty subset of ecpi X ,then
Noc M (= N{xM :Me M3}) is oc-closed;
(2) it M is a subset of X ,then
aM=N{Neexp Xs N> M, N is o -closed’.
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Proof, (1) Since Nx M c ax M for all
M € %L , we have, by the monotonicity and the idempo-
tency of oc ,

(N @) c awlaxM)=axM for allM € W7 .
Thus,

c(NxPt)c N 9L .
By the extensivity of oc, Nax @ c ot (Nec L) ,
iee t(Nx ) = Nox 227, and Nx W is oc -
closed.

(2) Let Wt ={Neexp X: NoM , N ie
o -closedi. If N e ,then N = & N > oM (ox mono-
tone), and N9 Dx M .Further,cM M and «c M is

o« -closed ( oc extensive and idempotent), i.e.xM €
€ 9L , Therefore, ocM = N WL .

Definition 3. Let X be a topological space, C a
subset of X, ot a ¢ -closure on X and ¥: C — X a
mapping. The mapping f is called oc¢-generalized con-
centrative if the following three conditions are satis-
fied:

(1) ¥ is continuous;

(2) if M is a subset of ( and M = xx F (M) ,
then M is compact;

(3) if M is a subset of ( such thatf(M)c M
and eard (M N\ £ (M) £ 4, then M is compact.

If X is a linear topological space and & = &,
then ¢  if it is o' -generalized concentrative, it is
called generalized concentrative (on C ).

Remark. The notion of the generalized concentra-

- 123 -



tive mapping was recently introduced by Lif#ic and Sadov-
skii in [11] in the following sense: A continuous mapping
‘from a subset ( of a locally convex space X into X
is called "geheralized concentrative" if it satisfies the
condition:

if M is a subset of C such that f(M)Yc M and
M\ o f(M) is compact, then M is compact.

It is easy to see that this notion is a special ca-
se of our definition (even in the case of locally convex
space X ).

Proposition 1. Let X be a non-empty topological
space and f : X — X a mapping satisfying the condi-
tion: .

If M is a suhset of X such that f(M)c M
and caxd (M N\ f(M)) & 4, then M is compact,

i.e. ¥ satisfies the condition (3) of Definition 3 for
C=X.
Then there exists a non-empty subset K of X such

that
£+(KY o K .

Proof. The first part of the proof is very similar
to that of [11). Let 0 be the class of all ordinal num-
bers, Q‘ the class of all ordinal numbers of the first
kind, i.e. which have predecessor, and 01 is the class
of all ordinal numbers of the second kind. For each X,
inX and 0" in 0 we construct a directed net{x 3 _ .
such that:
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(1) o € O, ana ox < I implies X = F(x ,);

(2) o« &€ 0, and 0 <cc < J implies ‘that X,
is a limit point of the directed net {"p;n«x .

let x,€ X and J € 0 be given. The proof pro-
ceeds by transfinite induction. Suppose we have con-
structed a directed net {x 3 _. . for some g < o
such that 1) and 2) are satisfied with o instead of
dg. 1t g e 0, , we et X z-ﬂ(.xf_4). Now, suppo-
sethat 0< gy <, P € 0, . Let M={x :x<].
Clearly, f(M)={x : ® <y, € 0 3c M. Deno-,
te by S the set of all ordinels o’ € 0, euch that
0O<x’<y andx , ¢ FCM) . If S # F , then the-
re exists oc”< mim S . From the definition of o” it
follows that {X %, 3 cacs © (M) . By the inductive

hypothesis, x_, is a limit point of the directed net

{xﬂiﬁ«x” . Thue Xy 6 X5, o, € FIM),
a contradiction with the definition of oc” . Therefore,

S = ﬁ and we have:

—

Xgdocpecy =MNAIx 2 cfim) |

i.e.
MNEM) <{x,3§.

Hence caxd (M \ # (M) £ 4 . By the hypothesis, M
is compact. The directed net {"chx<7 has limit
points in M .One of this limit points we denote by .xr.
Hence we have the directed net {xw3¢<r” which sa-
tisfies the conditions 1) and 2) with 9+ 4 instead of
o”. By the principle of transfinite induction, there is

a directed net {xx}ac< S which satisfies the condi-
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tions 1) and 2).

Let o be an ordinal number such that card o >
> card X . Let {x 3 _ .~ be adirected net which
satisfies the conditions 1) and 2). Since card J" >
> caxd X ,there are distinct ordinal numbers ot” and 3’

such that .xdl = , - et ot be the smallest ordinal

X
3
number such that Xx_ = xﬂ,
"> o« and let 3 be the smallest ordinal number

for some ordinal number

greater than o such that X, = .xp . Put

l<={xa_: x<g=pB3.
We shall prove that #(K)> K .If € 02 and ot <g- <
£/3 then .><a, is a limit point of the directed net
{xozgoﬁr , 8nd of {x, I _, e K, too. Thus, X €
€ fCK) (the proof is similar to the construction of
the element \xa,, given above). If 7€ 01 and o <

<% £ /3, then xa,=f(xr_1),whereocéfa*-4</3

and hence .xz,e f(KYec f(K) (because.)%__qs X, € K

in the case yr— 4= ot ). Thus, we have K c f(K)
and K is non-empty.

Proposition 2. Let (X,a ) be a bounded complete
pseudometric space and ¥ : X — X a concentrative
mapping. Then ¥ is a ¢€ -generalized concentrative
mapping.

Proof. Since f is concentrative, it is continu-
ous. Let M be a subset of X such that M= el f(M)=
= #(M) . hen y(#(M)) = g (f(M)) = (M) ; therefo-
re, ‘,{(M} = (0 and M is precompact. Since M is

closed in X and X is complete, M is compact. Now,
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let M be a subset of X such that (M) c M and
caxodl (M N\ e F(M)) £ 1.

Then M \f(M= A , Where A is empty or a single-
ton of M . Hence

AM) £ ATEMUA) =1 (EM) & 1AM .
Since ¥ is concentrative, M is precompact; the com-
pleteness of X implies the compactness of M. Thus,
{ is a € -generalized concentrative mapping in X .

Corollary 1. Let (X ,d) be a pseudometric spa-
se, £: X — X a concentrative mapping, £ (X )
bounded and complete subset of X for some positive
integer m (4°= <d). Then the mapping + , considered
as a mapping of £ (X) into W(—.—)Z_)., is a e¢f-ge-
neralized concentrative mapping. n

Proposition 3. Let (X ,II- Il Y be a pseudonormed
space, C a non-empty convex bounded ccmplete subset
of X ,¥:C— C a concentrative mapping. Then +
is a generalized concentrative mapping.

Proof is similar to that of Proposition 2 (we
use the equality y (M)= x (& M) ; note that
o :expp C—> expn C).

Corcllary 2. Let (X Il - l) be a pseudonormed

space, C a convex ccmplete non-empty subset of X

1) The inclusion 4 (£ (X)) c £™ (X ) follows

frcm the continuity of 4 :

PUE XN cFEMXN= £ (X)) e £ (X)) .
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and ¥ : C—> C & generalized concentrative mapping.
Suppose that, for some positive integer m , £™ (C)
is bounded. Then f , considered as a mapping of

eor £f™(C) into iteelf, is a generaliz_ed concentra-

tive mapping.

3. Fixed point theorems

The following proposition is crucial in the fol-~
lowing exposition.

Prcposition 4. Let C be a set, o & c=-closure
on C and ¥: C — 26 a mapping such that:

(1) there exists a non-empty subset K of C
such that
a f(KY > K .

Then there exists a non-empty subset C, of C such that
xf(CHY)=2C, .

Proof. Let

M=1{Meexp C: KcM=axM,$(Mic M3 .
Clearly, 2 # £ since: C o K, = C (this
follows from the extensivity of oc), £(C) < ( and
we have C € D¢ .

The system 991 has the following property:
(P) if M€, then xf(M) € 9 .
Indeed, let M € M and M = oo £(M) . From the idem-
potency of or it follows that ctM,,-— &k f(M) =xf(M)=M,.

By the hypothesis (i) and the monotonicity of ot ,we
have
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KecaxfK)catM)=M, -

Since (M) c M , the monotonicity of ot implies that

M,sxfM>c M =M ;
therefore,

tM) cfMIcx £ (M)= M, (the extensivity of oc ).
Thus, M, = cc (M) € %L , and the property (P) is pro-
ved.

Put

GC=Nwt = N{M:Me L3 .

First of 811, { € MWt since: Kc Nt =(,, £(C,) =
=fOW) c N$(W@) cnNW = C , and,
by Lemma 5, €, is oc -closed, i.e. xC, = C, (the
second inclusion follows from the fact thatf(M)c M
for all M e @t ).

Now, by the property (P), we have oif (C )e %¢ , and

hence (, ¢ o« £(C)) . Since f(c,) ¢ C, , the mo-

notonicity of ot implies that « f(C,)c «C, = C, ,

i.e. we have
xf(c,)=C, .

As a consequence of Proposition 4 we obtain

Theorem 1. (A special case of Theorem 1 in [5].)
Let X be a locally convex (Hausdorff) linear tocpolo-
gical space (over R or € ), C a non-empty convex
subset of X, and f: C — C a continuous mapping.
Suppose that f satisfies the following conditions:

(i) there is a non-empty subset K of C such
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that ¢ f(K) > K ;

(ii) if M is a subset of C with & f(M)=M,
then M is compact.
Then ¢ hus a fixed point in (C ,

Proof. See the proof of Theorem 1 in [(5]. The

first part of that proof is contained in Proposition 4
if we set of = ¢ . The second parts of both proofs a-
re the same.

Theorem 2. Let X be a locally convex (Hausdorff)
linear topological space, ( & non-empty convex closed
subset of X and ¥ ; C — C a generalized concentrati-
ve mapping. Then § has a fixeﬁ point in C .

Proof. Since f is generalizea concentrative, it
is continuous and satisfies the condition (ii) of the
hypotheses of Theorem 1. The condition (i) of Theorem 1
is a consequence of Proposition 4. Now, it suffices to
apply Theorem 1.

Corollary 3 (Sadovskii [13]). Any concentrative
mepping of a non-empty convex bounded closed subset of
a Banach space into itself has a fixed point.

Proof. See Proposition 3 and Theorem 2.

Remark. Further fixed point theorem can be ob-
tained at once from Corollary 2.

Corollary 4. Let X be a Banach space, ( a non-
empty convex bounded closed subset of X and f: £ —
~—» ( a mapping. Suppose that f is the sum of a com-

pletely continuous mapping @ : C — X and a &k-con-
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centrative mapping (0 £ k < 41) Mm: C —> X . Then
£ has a fixed point in (.

Proof. See Lemma 4 and the preceding Corollary
3.

The following theorem is Theorem 3 in [5], but
we remove a superfluous hypothesis on the set (.

Theorem 3. Let X be a locally convex (Haus-
dorff) linear topological space and { a non-empty
complete bounded convex subset of X .Let P be a defi-
ning system of pseudonorms on X (i.e., the collection
{/(1:4((0,9 N:neP,0< € <1} is a base for neigh-
borhoods of the origin in X ) and f: (— C aP-
concentrative mapping in the sense that f is continu-
ous and satisfies the following condition:

(C) if peP and M is a bounded non-p-pre-
compact (i.e. M is not preccmpact in the pseudonormed
space (X, n)) subset of X, then

Ap (f(M)) < ?('ﬂ M),
where 7(1‘(. ) denotes the measure of non-compactness
in the pseudonormed space (X, 1)
Then' the mapping £ has a fixed point in C .

Proof. We shall show that f is a generalized

concentrative mapping on ( .

Let M be a subset of C such thatéo fF(M)=M ,
Then %ﬂ(*’(MN‘—‘ }Cﬂ(M) for all pe P, Hence'M
is precompact in X. Since M is closed, precompact
and C is complete, the set M is compact.

Now, let M be a subset of C such that f(M)c M
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and canol (M N F(M) & 4. Then M~ (M)~ A for
some subset A of M with caxd A £ 4 . Hence

Ap (F M & 7y (M) € A (FMIU A)= L (FCMD)
for all € P . As before, it follows that M is com-
pact.

Since ¥ is also continuous, it is a generalized
concentrative mapping on (. Theorem 2 assures the ex-
istence of a fixed point of ¥ in C.

Theorem 4. Let X be a non-empty complete metric
space and f: X —» X a concentrative mapping. Let
d: X <X~ <0, +00) bea lower semi-continu~
ous function such that the two conditions are satisfied:
(1 a’'or= 4 ={(x,x): x € X} (= the diagonal
in XxX)ie. dl(x,n)=0 iff x = 4 ;
(2) do (¢ x )< d on X x XNA ,i.e.

X,np€ X, x # 4 implies d(£(x),f(y)<d(x,y).
Suppose that £ (X) is bounded for some non-negative
integer m (4°(X) = X) . l

Then f has a unique fixed point in X .

Proof. Let € = ™ (X). By continuity of f ,

$CC) = £ XN cFHEm Q)= ™ X)c ™ (X)=C .

Hence £ is a concentrative mapping of the bounded com-
plete metric space C into itself. By Proposition 2,
is el -generalized concentrative on C . By Propositions
1 and 4, there exists some non-empty subset C, of C
such that cf £CC,) = (, . The cf-generalized
concentrativeness of £ on C implies the compactness

of C, .Define on (, a function @ by
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P(x)=d(x,f(x)) for xe C -

Let o :C—+ C, x C, be defined by
I(x)=(x,x), xeC, .

Since d is lower semi-continuous on (, x C, to R,
id x + is continuwous on (, x C, to (, x C, eand
d" is continuous on C. to Co x C’ s their composite
@ =do(id xf)ed" is lower semi-continuous on C,
to R . Hence @ (x) attains its minimum at some point
X, in the compact set C, .Suppose that @ (>() # O.

Then d (x,,f(x,)) > 0. Therefore, X, # f(X,),and, by
(2), '

P, N=d (%) FExIN< A (X, #lxN = §(X5) 4

a contradiction with the minimality of the function
@(x) et x, .Thus, p(x,)= 0, i.e.d(x,, #(x,))=20.
Hence (cf. (1)), X, = f(x,). The uniqueness of the fi-
xed point X, follows at once from (1) and (2).

Remark. ‘If the function d is the metric of the
metric space X the preceding theorem can be deduced
from Edelstein’s theorem [9]. Edelstein’s theorem was
generalized by Ang and Daykin [1,Th.1] to topological
spaces with a family of continuous pseudometrics. From
Ang-Daykin‘s theorem we can derive

Theorem 5. Let X be a non-empty topological
space, D a family of continuous pseudometrics on X
and of & ¢-closure on X .Let £: X —> X be an
o -generalized concentrative mepping such that both

following conditions are satisfied:
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W dEx), (N £ d(X,4) forallx,yeX and
deD,ie. de(fxf)£d on X xX ;

(2) for each X, ny € X, X # a4 there exists d e D

such that df(x),fy)N) <d(x,y) ,

i.e. the function {d (x,y)~d F(x),f(y)):deD}=rlx,y)
is positive on X x X\ A, where A={(x,x): xe€ X}
is the diagonal in X x X .

Then the mapping f has a unique fixed point p
in X, Furthermore, +™(x) —> v in the D-topology
on X for each X e X, i.e.d(f™(x),nn) —» 0 for
eech de D, xe X .

Proof. Let x € X be arbitrary. Let M= {f™(x):
tm=0,1,2,...3. Thenf(M)c M, end
cand (MN\£CM)) £ card (MNF(M)) & card{x] & 1 . Hence

M is compact since £ 1is o< -generalized concentra-

tive. Thus, the sequence {£™(x)? has a limit point

£ (x) . Now, we can apply Ang-Daykin’s theorem to ob-
tain d(#™(x), n(x)) — 0 for each d € D , and
s (X) is the unique fixed point of £ i.e. f(x) =

= const = f2.
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