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Commentstiones Mathematicae Universitatie Carolinae 

11,1 (1970) 

GENERALIZED CONCENTRATIVE MAPPINGS AND THFIR FIXED 

POINTS 

Josef DANES, Praha 

0« Introduction. The notion of the measure of non-

compactness w»s introduced by G. Darbo [7] and Sadovskii 

[ 13] • By means of this notion G. Darbo defined a Jk -set-

contraction and Sadovskii a concentrative mapping. Darbo 

and Sadovskii proved for their classes of mappings the fix­

ed point theorems.We observe that the Sadovskii 8 class of map-

pinga is broader than the Darbo's one. But the sum of a 

completely continuous mapping and a Jk -contraction is the 

to/ -set-contraction of Darbo 11]. Hence the most impor­

tant case is already covered by Darbo (implicitly). Let 

us note that the classes CL (Jk) (0 £ Ms < A ) 

and Cv of Frum-Ketkov C8J are near to that of Darbo. 

Further development of concentrative mappings (reap. 

Jfc-set-contractions) is contained in Badoev, Sadovskii 

12], BorisoviS, Sepronov L3J, Danes £4,5,6], and Nussbaum 

[12]• Index and rotation notions for this class of map­

pings are developed in t3, 121. The notion of a genera­

lised concentrative mapping was introduced by LifSic -

Sadovskii in [ 11], and in more general fashion in our 
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report [61 XK 

The purpose of the present paper is to introduce 

cC -generalized concentrative mappings in a topologi­

cal space and to prove fixed point theorems for such 

mappings. Our point of departure is l5,Th.l] which hy­

potheses are very near to the definition of a generali­

zed concentrative mapping. 

In Section 1 we introduce notation and defini­

tions. Some simple and well-known lemmas are given. Sec­

tion 2 deals with oc -generalized concentrative mappings. 

Fixed point theorems are contained in Section 3. 

1. Notations and definitions. TR and C deno­

tes the field of real and complex numbers, reap. For X 

a set, we denote by 4xp, X the set of all subsets of X 

and by 2 the set of all non-empty subsets of X • 

1) (January 9,1970): Further results are contained in 

"Problémy matematifieskogo analiza složných sistem", vyp. 

2, 1968, Voronež which was sent to me by B.N. Sadovskii: 

V.A. Bondarenko: On the existence of the universal 

measure of non-compactness, pp.18-21; 

O.M. Vainikko, B.N. Sadovskii: On rotation of con-

centrative vector fields,pp.84-88; 

B.N. Sadovskii: On measures of non-compactness and 

concentrative operators, PP.89-119• 
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If X is a topological space, then el M and M de­

note the closure of M in X . If X is a linear space 

(over H or C ), then c*rM , can M, a£CH , ̂ ftM 

denote the convex, cone, affine, linear hull of the 

subset M of X ,resp. For X a topological linear 

space (over R or ( ), the operations e3r , Wn., 

aS>, JSfi are defined by 2? » el car, S&n, s* ci cam, 

off 9 el cAf , £fi •» cl Afi. . 

Let (X7cL) be a pseudometric space and M a 

subset of X . --*et £ ( M , € ) den<>te the closed 6-ball 

at the set M t i.e.B(M, t) * Cx e X : >ka/*<<i Cx,<y.) : 

: ay € M.] £ €> } 0 The measure of non-compactness 

of the set M in X is defined by 

^(M)« wf a<M) (<mf0 » + oo> , 
where 

fl(M) - ie € K : t >• 0 and there is a fini­

te 6 -net for M in X , i»e. B ( ^ , e ) o W for some 

finite subset CT of X I . . 

If M,.N are subsets of X and M is bounded and -N 

non-empty, we define 

#<MtN>» -Wle.eK s £> 0?B(K;e ) 3 M3 . 

If M and N are both bounded and non-empty, let 

d,M(M,N> '- fmax{<&(M,N)f ^(HfH)} 

be the Hausdorff distance between M and JSf . 

The following lemmas are easy to prove: 

Lemma 1. Let (X,ct) be a pseudometric space 

and M a subset of X . Then 

117 



(1) \(M ) « -wf f e € *R : £ > 0 and there i s a 

compact subset X of X 

with 3(K,e ) D Ml -

* Xrif { E € K ; & > 0 and there i s a 

precompact subset P of X 

with BCP, £ ) D M / ~ 

* ifrf-fl^CM., *T) * 0* a f in i te subset 

of X ? > 

(2) M is precompact if and only if %(M) ** 0 ; 

(3) M is bounded if and only if % C M ) < 4- oo ; 
(4) if Wl is a aubset of c*^ X , then %(i)7n) & 

fr bap %CWt) ; 

(5) if Vfl is a finite subset of exp, X 9 then 

%(um) m *wp,%(m) ; 
(6) if M c N e €»ft X , then ^ C M > 6 % (M > J 

(7) ^ C M ) ^ 1*CM,N) -*• ̂ C N ) for all.M,N eexflX; 

(8) l^(M) ~\(N) I 6 d H C M , K ) for all bounded 

non-empty subsets M , K of X \ 

(9) the measure of non-compactness %(0) is continuous 

on the pseudometric space (h(X)jCL ) of all non-empty 

bounded subsets of X -

Lemma 2, Let C X , II * II ) be a pseudonormed spa­

ce (over TR or C ) and M and fi subsets of X • 

Then 

(1) %(XM}*\k\%(M) for all X e K (resp-

X e C>- X * 0 <t 

(2) /m^-(^CM)^CN)}i#CM+N)^ X(Nl)+%(N)<, 

(3) JtCM) - ̂ S ? M ) . 
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2. Generalized concentretive mappings 

Definition 1. Let (XfaL) and (Y,e ) be pseu-

dometric spaces and C a subset of X . Then a mapping 

f ; C —> y is called concentrative, if f satisfies 

the following two conditions: 

(1) f is continuous; 

(2) if N is a bounded non-precompact subset of 

X y i-e. 
0 < *%>cLCM) < -H OO , then ^CiCfA))*1td(M)* 

The following two lemmas are obvious. 

Lemma 3. Let(X.,ci) and C^!9€,) be pseudomet-

ric spaces, C a subset of X and -f ; C —> V a map­

ping. Suppose that one of the following conditions is sa­

tisfied: 

(1) f is continuous and maps bounded subsets of 

C onto pre-compact subsets of Y ; 

(1*) f is continuous and f(C) is precompact; 

(1) f is a M-contraction CO is Jfe, -<-- 4 ) , i.e. 

eCf Cx),f (nf))& Jk,dCx,/y,) tor x, /y~e C ; 

(1-2) C - £ U C* , f is continous on C f 

maps bounded subsets of C, onto precompact subsets of y 

and is a .&-contraction on C^ CO 6 Jk> < 4 ) -

Then f is a concentrative mapping (even, Jk-con­

centrative, i.e. %J4CM)) « Jk^jCM) for bounded 

subsets M of C ). 

Lemma 4. Let (X, d ) be a pseudometric space, 

( y, R • 1 ) a pseudonormed space and C a subset of 

X » Suppose that f and q* are mappings on C into 
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Y such that 

(1) f is continuous and maps bounded subsets of 

C onto precompact subsets of Y 5 

(2) ô  is a Jt,-contraction (0 £ Jk, < 4) , i.e. 

$fy(X)-fy(ty)% £ Hd(X,<y.) tOTX,ty€C* 

Then C-f -t-a.) ; C —> Y i s a concentrative 

mapping of C into y (even, a Jk -concentrative map­

ping). (This was pointed out by Sadovskii C13J.) 

Definition 2. Let X be a set and oc a set - to-

set mapping defined on a l l subsets of X7 i . e . 

Zic^h j£ — t QXJ^ j( ^ s u c h that: 

(1) £ c oC ( oc i s extensive), i . e . 4Hs M c oc M 

for a l l M € ee/i/ X ; 

(2) 0C0C » oc ( oo i s idempotent), i.e.ocCocM)** oC M 

for a l l M e etfx X j 

(3) oc i s monotone, i . e . oC M c oc J\f for a l l M c 

c N c A . 

Then oo i s called a c -closure on the set X . 

A subset M of X i s called oc -closed, i f ocM -» M . 

Examples. (1) Let .X be a set and if a system 

of subsets of X with X e if. For M e ejoft X , l e t 

oc C M ) ~ n { S « y ? 5 3 M J , 

Clearly, oC i s extensive and monotone. If S^ O M , 

S1 € Sf , then oC ( M ) c S^ f sineeS^ 6 <5e if:Sz>H3. 

Hence 

cC CM) 3 oc CoC^ CM)) . 

Since the inverse inclusion follows from the extensivi-

ty and the monotonicity of cC^ , oc^ i s idempotent. 
<r ' Cr 
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Thus, oC i s a C-closure on X • 

(2) Let X be a set , P a subset of .X and fi 

a e -closure on X • For M € &cfi X , l e t 

<%M - / i ( P u M ) • 
Then we have: 

acM - / 3 C P u M ) 3 P u M o M for all M 6 eJtfiX, 

<^CocM)^/3CPur3CPuM))*/5C/3CPuM»«/3CPuM)-=ot:M 

for a l l M e &cfi> X -

If M, Ne vop, X and M c N , then M u P c: N u P , 

and hence 
ocM * / 3 C P u M ) c / 3 ( N u P > ~ <KN . 

Thus, oC is a C -closure on X # 

(3) Let X and y be sets, fi> a c -closure on 

y and f a mapping on X into y such that ff"-r id . 

For M e exfr X , let 

ocM ~ r\(l(f(M))) . 
Then, for M f N €. eiofi X , M c N , we have succes­

sively, 

(lCi(M))oi(M), <nM^ri(ft(i(M)))Dr1(i(M))D M , 

oC fix M) ~ f f y (f Cf" V <f CM ))»» « f" V ^ <̂  <M » » » 

~fV/3Cf(M») * ocM , 

fCM)cfCN)> /3CfCM))c/3CfCiSf);ocM«f"C/SCf (M))) c 

cfiCft(i(N))) ** <xN . 

Thus, oC is a c-closure on X • 

(4) Let X be a set and let /S and tf be C -clo­

sures on J( such that y/3 f ** ftf, ±**»7(ft(tf(M)))** 
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- fiCfCM)) for a l l M € exfi X . It i s easy to see 

that oc m (*><$ i s a c -closure on X (the idempo-

tency of oc follows from f ft T * ft? >• 

(5) Let X be a linear space. For M € &op> X 

we define: 

or M =* the convex hull of M j 

c<mM - U e X *. x * t m , . m € M , tcTR^t & 03 • 

<xff M -» the affine hull of M ) 

/»jx M * the linear hull (span) of M • 

Then Qjcry e<m-, a£4, *f i are c, -closures on X * 

(6) Let X be a topological space. Then i t s closu­

re operation ct i s a c-closure on X . 

(7) Let X be a linear topological space. By (4-6), 

3 r m dt cxr ** the closed convex hull,SJ5i m cZcm** 

* the closed cone hull , oM * ct off -» the closed af­

fine hul l , >£fv m c,2 toft «• the closed linear hull , are 

C -closures on X . 

(8) Let X be a pseudometric space and, for M c 

eoxJft X , l e t 

oc M » H C B ; B a ball (closed) in X , B o MJ . 

By (1) , GC i s a c-closure on X # 

.Lemma 5. Let X be a set and oc a c-closure 

on X . Then: 

(1) If Wl i s a non-empty subset of oiop, X , then 

0 oc 7ft> C s H i<K M i M € W 1 > i s oc-closed; 

(2) i f M i s a subset of X , t h e n 

ocM sr CiiN e expX t N a Mf N i s oc-closed}. 
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Proof. (1) Since HocWi c oc M for a l l 

M € /WH , we have, by the monotonicity and the idempo-

tency of oc , 

oC(f.oc <m ) c ocrocM)*oc.M for a l lM e V3t . 

Thus, 
ocCHoc'33t)cf.oc'?3fc • 

By the extensivity of oc . , f ioc3?Tcac( .Ooc Tffl ) , 

i . e . oC (f\ oc Wt ) ss- D oc Wt , and (1 oC '^t' i s oc -

closed. 

(2) Let 7tt*-tNeexfi, X * N .=> M , N i s 

oC -closed}. If Jsl e Wt ?then .N =- oc J\| o ocM ( oC mono­

tone), and (\1ffl ZXJLM . Further, ocM D M a n d *cM i s 

oc -closed ( oc extensive and idempotent), i . e . ocM c 

€ 'Wt . Therefore, oc M «* H fl-Jfc • 

Definition 3» Let X be a topological space, C a 

subset of A , ot a e -closure on X and -f : C —* X a 

mapping. The mapping f i s called oC -generalized con-

centrative i f the following three conditions are sat i s ­

fied: 

(1) f i s continuous; 

(2) if M is a subset of C and M ~ oc 4 CM ) , 

then M is compact; 

(3) if M is a subset of C euch that fCW) c M 

and bcucoLtM S 4 CM)) £ i , then M is compact. 

If X is a linear topological space and oC -=• 2P, 

then 4 if it is 5cr-generalized concentrative, it is 

called generalized concentrative (on C )• 

Remark. The notion of the generalized concentre-
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tive mapping was recently introduced by LifSic and Sadov-

skii in [11] in the following sense: A continuous mapping 

from a subset C of a locally convex space X into X 

is called "generalised concentrative" if it satisfies the 

condition: 

if M is a subset of C such thatfCMIcM and 

.M \ Sir f C M ) is compact, then M is compact. 

It is easy to see that this notion is a special ca­

se of our definition (even in the case of locally convex 

space X ). 

Proposition 1. Let X be a non-empty topological 

space and f s X —* X a mapping satisfying the condi­

tion: 

If M is a su^set of X such that f CM) c M 

and zwcd, ( M \ f CM)) 4k A , then M is compact, 

i.e. f satisfies the condition (3) of Definition 3 for 

Then there exists a non-empty subset K of X such 

that 

fCK) 3 K . 

Proof. The first part of the proof is very similar 

to that of til]. Let 0 be the class of all ordinal num­

bers, CL the class of all ordinal numbers of the first 

kind, i.e. which have predecessor, and 0* is the class 

of all ordinal numbers of the second kind. For each X0 

i n X and cf in 0 we construct a directed netixji ^** 
Of <X<0 

such that: 
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(1) tie € 0^ and oi < <f implies x^ s* fCx^^); 

(2) x 6 0, and 0<cC<cT implies'that x^ 
2 oo 

i s a limit point of the directed net ^XA-*i3<flC • 

Let x 0 € X and cf € 0 be given. The proof pro­

ceeds by transfinite induction. Suppose we have con­

structed a directed net ixA^^^ for some or < cT 

such that 1) and 2) are satisf ied with qf instead of 

cf. If <f e Of f we set ,x » -fCx^ ) * Now, suppo­

se that 0 < <f < cT <y c 0^ . Let M«<^cjCiflC<ari. 

Clearly, -F CM) -=• < ^ - o C < ^ r ? oC £ g, ? <? M * Beno- , 

te by 5 the set of a l l ordinals cc' € £L such that 

0 < <*'<: Y and tx0C/ <# f CM > . If S # # , then the­

re exists oc/7-sr <m&n> S . From the definition of <x" i t 
follows that i x * ? 0 < / 3 < o C , c: -PCM) . By the inductive 

hypothesis, x „ i s a l imit point of the directed net 
oC 

**»*!*<«" • raua •*•*" • • * f * , » W « c * c f(M} > 
a contradiction with the definition of ac? . Therefore, 

S » 0 and we have: 

i.e. W S -ř(M) <: <xвì . 
Hence fiaA^ CM \ 4 C M ) =4 4 . By the hypothesis,M 

is compact. The directed net ix^ioc< ^ has limit 

points in M .One of this limit points we denote by x . 

Hence we have the directed net { X - J ^ ^ ^ w which sa-

tisfies the conditions 1) and 2) with QT-f 4 instead of 

(f\ By the principle of transfinite induction, there is 

a directed net {x J ^ ^ v* which satisfies the condi-
oC oc << o 
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tions 1) and 2). 

Let cT be an ordinal number such that ewooL cT > 

> &ax>dL X • Î t iy*A^ ^ be a directed net which 

satisfies the conditions 1) and 2). Since ea&cL <f > 

> icuccL X ,there are distinct ordinal numbers at' and ft' 

such that ,x . =r x . Let <?t be the smallest ordinal 
<*' /3' 

number such that x sr x „ for some ordinal number 

fi' > cc and let ̂ S be the smallest ordinal number 

greater than aC such that x == :x . Put 

We shall prove that 4(K) o K .If y 6 02 and oC <#"£? 

fs ̂ 3 then .x^ is a limit point of the directed net 

*Vl<r > and of {V*<*«rc K > t00' ThU8' x r e 

€ 4CK) (the proof is similar to the construction of 

the element ,X~ given above). If jr € fl> • and oC < 

< qf £ fi , then -x * f f«r--| > , where oc * y - 4 <: /S 

and hence x e -f CfO c f CK ) (because,^ * x e K. 

in the case 'jr— 4 * oc )• Thus, we have K c 4CK) 

and K is non-empty. 

Proposition 2. Let CX,<^ 7 be a bounded complete 

pseudometric space and 4 f X —* X a concentrative 

mapping. !Phen 4 is a e€ -generalized concentrative 

mapping. 

Proof. Since f is concentrative, it is continu­

ous. Let M be a subset of X such that M ~ &t> 4CM)-s 

S FcW) -Then ££KM)> * JfcCfCM)) « ^ C M ) | therefo-

re, ̂ £(M *) « 0 and M is precompact. Since M is 

closed in X and X is complete, M is compact. Now, 
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l e t M be a subset of X such that f (M ) c M and 

ewcoi (M \ e€ f CM > > s£ 4 . 

Then M \ f C M ) ~ /4 f where A i s empty or a single­

ton of M . Hence 

^(M) * ̂ CfCM)u4)-^CfCM>) ̂  7((M) • 
Since -f is concentrative, M is precompact; the com­

pleteness of X implies the compactness of M . Thus, 

•f is a t( -generalized concentrative mapping in X , 

Corollary 1. Let (X7ci) be a pseudcmetric spa-

se, *f : X —•> X a concentrative mapping, -f^ (X ) 

bounded and complete subset of X for some positive 

integer *m, C-f**-* i,d)» Then the mapping f f considered 

as a mapping of 4** CX) into f/m'(X) , is a e/-ge-

neralized concentrative mapping. 

Proposition } . Let CX , II • 0 > be a pseudonormed 

space, C a non-empty convex bounded complete subset 

of X , -p : C —¥ C a concentrative mapping. Then f 

is a generalized concentrative mapping. 

Proof is similar to that of Proposition 2 (we 

use the equality tf CM)** %(&r M ) » note that 

Sr ; &op C — y e>of% C ) . 

Corollary 2. Let CX,I1 * II) be a pseudonormed 

space, C a convex complete non-empty subset of X 

1) The inclusion f (*""• CX>) C fm (X ) follows 

frem the continuity of -f> * 

f (І^CX^c: fCř^CXD^Г^+UlOc: .ř"*CX> . 
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and I J C —* C a generalized concentrative mapping. 

Suppose that, for some positive integer /m, -f/m CC) 

is bounded. Then f , considered as a mapping of 

— f"»>(C) into itself, is a generalized concentra-

tive mapping. 

3. Fixed point theorems 

The following proposition is crucial in the fol­

lowing exposition. 

Preposition 4. Let C be a set, ot a e-closure 

on C and f ; C — f 1 a mapping such that: 

(1) there exists a non-empty subset K of C 

such that 
o c f C K ) 3 K • 

Then there exists a non-empty subset CQ of C such that 

ocfCC0-> = C„ . 

Proof. Let 

Wl**ib\eecp Ct KcM -=«cM, <fCM/c Mi . 
Clearly, Wt, -# 0 s ince; C 3 K , < J C C - C (this 

follows from the extensivity of ac)f -f CC ) c C and 

we have C € /30t . 

The system ffli has the following property: 

(P) i f M e 3 # , t h e n <*fCM) € ^ * 

Indeed, let M € W * and M ^ » <& "f CM ) . From the idem-
1 

potency of oo i t follows that acML-oCoC-fCM) «<<-f CM)«-Mf. 

By the hypothesis ( i ) and the monotonicity of oC ,we 

have 
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K c oc -f CK) c o c f C M ) * Mf • 

Since f CM ) c M , the monotonicity of <fc implies that 

M^ * etfCM) c ocM m H . 

therefor© > 

4<.Mi) cfCM>C<Kf(M)~ M1 (the extensivity of cC ) . 

Thus, M^ ** otfCM) e Wt and the property (P) i s pro­

ved* 

Put 

C0 m PiTTC ss MM> M e w ? . 

First of a n , C0 c WC since: K c d » t » ^ , f CC,) ~ 

^ f ( n # ) c f l f (33t) c H'Wt - C0 , and, 

by Lemma 5, C0 i s oc -closed, i . e . ccC0 — C0 (the 

second inclusion follows from the fact that 4(M ) c M 

for a l l M € '30Z ) . 

Now, by the property (P), we have oi-f CC )e Wt and 

hence C0 c cC-f (C ) . Since -f(C0) c C0 , the mo­

notonicity of <JC implies that cc, f CC, > C oC Ce -=-* C0 , 

i . e . we have 
<*fCC,> - C0 . 

As a consequence of Proposition 4 we obtain 

Theorem 1. (A special case of Theorem 1 in f5]») 

Let X be a locally convex (Hausdorff) linear topolo­

gical space (over R or C ), C a non-empty convex 

subset of X , and f: C —* C a continuous mapping. 

Suppose that f satisfies the following conditions: 

(i) there is a non-empty subset K of C such 
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that 6? f t K ) 3 K ; 

(ii) if M is a subset of C with S?fC*M)-M, 

then M is compact. 

Then i has a fixed point in C . 

Proof. See the proof of Theorem 1 in C5J» The 

first part of that proof is contained in Proposition 4 

if we set ot =r 5r . The second parts of both proofs a-

re the same. 

Theorem 2. Let X be a locally convex (Hausdorff) 

linear topological space, C a non-empty convex closed 

subset of X and f ; C —* C a generalized concentrati-

ve mapping. Then f has a fixed point in C . 

Proof. Since f is generalized concentrative, it 

is continuous and satisfies the condition (ii) of the 

hypotheses of Theorem 1. The condition (i) of Theorem 1 

is a consequence of Proposition 4. Now, it suffices to 

apply Theorem 1. 

Corollary 3 (Sadovskii [133)- Any concentrative 

mapping of a non-empty convex bounded closed subset of 

a Banach space into itself has a fixed point. 

Proof. See Proposition 3 and Theorem 2. 

Remark. Further fixed point theorem can be ob­

tained at once from Corollary 2. 

Corollary 4. Let X be a Banach space, C a non­

empty convex bounded closed subset of X and f ; C -+ 

—• C a mapping. Suppose that f is the sum of a com­

pletely continuous mapping (^ t C —+ X and a it-con-
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centrative mapping CO £ J0t «-M ) fo: C —* X . Then 

•f has a fixed point in C, 

Proof. See Lemma 4 and the preceding Corollary 

3-

The following theorem is Theorem 3 in f5J, but 

we remove a superfluous hypothesis on the set C . 

Theorem 3. Let X be a locally convex (Haus-

dorff) linear topological space and C a non-empty 

complete bounded convex subset of X «. Let P be a defi­

ning sydtem of pseudonorms on X (i.e., the collection 

{,fi7 (< 0t e )); -ft 6 P , 0 < £ < 4 ? is a base for neigh­

borhoods of the origin in X ) and -P : C —+ C a P -

concentrative mapping in the sense that -f is continu­

ous and satisfies the following condition: 

(C) if *i e P and M is a bounded non-p-pre-

compact (i.e. M is not precompact in the pseudonormed 

space (X , /(i) ) subset of Ji 9 then 

\+c*m))<.\p,m), 
where X (• ) denotes the measure of non-compactness 

in the pseudonormed space ( X 7 <p, ) . 

Then'the mapping -f has a fixed point in C . 

Proof. We shall show that f is a generalized 

concentrative mapping on C . 

Let M be a subset of C such that 5? f(M) - M , 

Then ^ (1 ( M ) ) ~ %p(M) for all y , € P . Hence M 

is precompact in X . Since M is closed, precompact 

and C is complete, the set M is compact. 

Now, let M be a subset of C such t h a f f O D c M 
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and mJixl CM s f ̂ M) 6 4 . Then M ^ f CM > ~ A for 

some subset A of M with Co*<i A £ 4 . Hence 

^ (f (M» ̂  ̂  CM) £ ̂  CfcWcJ /4)~ t^Cf fMM 

for all to e P • As beforef it follows that M is com­

pact. 

Since f is also continuous, it is a generalized 

concentrative mapping on C . Theorem 2 assures the ex­

istence of a fixed point of f in C . 

Theorem 4. Let X be a non-empty complete metric 

space and 4 : X — > -X a concentrative mapping. Let 

d : X x X —> K 0 9 + oo ) be a lower semi-continu­

ous function such that the two conditions are satisfied: 

(1) d:4CO) ar A *<(x,x): x e X } ( = the diagonal 

inXxX),i.e. d(xrfy,) m 0 iff x » *y, j 

(2) d o (4 x f ) < d on X * A S A , i.e. 

X,/^e.X, X q - f implies cUf Ox), f C/y.>)<: dCx,/^,). 

Suppose that 4"** (X) ie bounded for some non-negative 

integer <m <«f*CX) » X ) • 

Then f has a unique fixed point in X . 

Proof. Let C » - f ^ C X ) . By continuity of f 

f cc)ar fff^cX))cfff
mCX))-f^^CX)cf'fn(X)^C . 

Hence f is a concentrative mapping of the bounded com­

plete metric space C into itself. By Proposition 2,f 

is e-C -generalized concentrative on C . By Propositions 

1 and 4, there exists 8ome non-empty subset Cff of C 

such that e£ f CC0 1 •» Cfi . The c£-generalized 

concentrativeness of f on C implies the compactness 

of C0 . Define on Cc a function <p by 
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f(x)=d(x^(x)) for xe C0 . 

Let cf t C0~-> CQ .x C0 be defined by 

(f(x ) ~ (X, X ), v X C ^ . 

Since oL i s lower semi-continuous on CL x (L to TR , 
O O ' 

td x 4 is continuous on C9 x C0 to C0 x C0 and 

<t is continuous on C to C x C . their composite 
O "O 0 7 

p ~ do (id x$) * <f is lower semi-continuous on C0 

to 1R . Hence p(x) attains its minimum at some point 

X0 in the compact set Ca -Suppose that <p(x:o) 4* 0* 

Then d(x^t)4(xo)) > 0, Therefore, x 0 ̂  4 (X0 ), and, by 

(2), 

g>(4(x0))=d(f(x.)9f(f(x0))Xd(xC7f(x0))=: p(x0) , 

a contradiction with the minimality of the function 

gf(x) at xo . Thus, <pCx0)« 0, i.e*d(x0,4(x0))=* 0. 

Hence (cf. (1)), x 0 « <f (xo) . The uniqueness of the fi­

xed point x o follows at once from CD and (2). 

Remark* If the function d is the metric of the 

metric space X the preceding theorem can be deduced 

from Edelstein's theorem [93- Edelstein's theorem was 

generalized by Ang and Daykin [l,Th.l3 to topological 

spaces with a family of continuous pseudometries• From 

Ang-Daykin's theorem we can derive 

Theorem 5 + Let X be a non-empty topological 

space, D a family of continuous pseudometrics on X 

and oC a c -closure on X . Let -f / X —v X be an 

oC -generalized concentrative mapping such that both 

following conditions are satisfied: 
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il) d(4(x),4 (<#>))£ d (*,<&) tor Bllx7^.e X and 

del), i.e. do (4*4) £ d on X x X ; 

(2) for each X7 ty e X , X & ty, there exists d e D 

such that dCf(x),4(«^)) <cLCx7<tf) , 

i . e . the function id(x7<^)"d(f(x),4(y,));deJ)}- A>(x,<y,) 

i s positive o n X x X \ / l , where A « I (x, x ) : X £ X } 

i s the diagonal in X X «X • 

Then the mapping 4 has a unique fixed point ^ 

in X . Furthermore, -f "*(x ) —> 41 in the D-topology 

on X for each X e X , i«e. <i (4** (x ) ; ^ ) —V 0 for 

each d 6 D , jc € X . 

Proof. Let * 6 X *>• arbitrary. Let M * 4**f"Y*x>: 

* / n * 0 , - f , 2 , . , . J - Then -PCM) c M , and 

CAnd(tA\4CM)) # (tt^CAf \ f CM)) A co^d-fx! £ 4 . Hence 

M i s compact since 4 i s oC -generalized concentra-

t ive . Thus, the sequence ff^Cx)? has a limit point 

ft (x) 0 Now, we can apply Ang-Daykin's theorem to ob­

tain d(4"v(x), yftCx)) —¥ 0 for each d c J) 7 and 

*fi C.X ) i s the unique fixed point of 4 i . e . <p*Cx) » 

-* &y*vbt m -+ft'» 
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