Commentationes Mathematicae Universitatis Caroline

Karel Najzar

Error-estimates for the method of least squares of finding eigenvalues and eigenfunction

Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), No. 3, 463--479
Persistent URL: http://dml.cz/dmlcz/105292

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
11,3 \text { (1970) }
$$

> ERROR - ESTIMATES FOR THE METHCD OF LEAST SQUARES OF FINDING EIGENVALUES AND EIGENFUNCTIONS
K. NAJZAR, Praha

In [1],[2], we considered the approximation of eigenvalues and eigenfunctions of a DS-operator. In this paper, we shall present a priori and a posteriori errorestimates for the method of least squares of finding eigenvalues and eigenfunctions. Upper and lower error bounds are found.

We assume throughout that A be a DS-operator with its domain in a real separable Hilbert space H, i.e., A is a symmetric operator in H such that the set of its eigenvalues is of the first category on the real axis and the spectrum $\sigma(A)$ is the closure of this set. Let $\left\{\Psi_{i}\right\}_{i=1}^{\infty}$ be a totally complete system. Suppose A is such that the eigenvalues $\left\{\lambda_{i}\right\}_{i}$ of A satisfy the relations

$$
\begin{equation*}
0<\left|\lambda_{1}\right|<\left|\lambda_{2}\right| \leqslant\left|\lambda_{3}\right| \leqslant \ldots \tag{I}
\end{equation*}
$$

and λ_{1} is simple.
Let R_{m} and R_{n} be subspaces of H determined by functions $\left\{\Psi_{i}\right\}_{i=1}^{n}$ and $\left\{A \Psi_{i}\right\}_{i=1}^{n}$, respectively. Let φ_{1} be normalised eigenfunction of A correspon-
ding to the eigenvalue , We shall denote the orthogonal projection of φ_{1} on R_{n} and Ω_{n} by $\varphi_{1}^{(n)}$ and ${ }^{(n)} \varphi_{1}$, , respectively. By T we shall mean the restriction of A to R_{n}. Since $O E \sigma(A)$, it follows that T and T^{-1} are continuous linear operators on R_{n} and Ω_{n} respectively.

It has been shown in [1] that q_{n} is an approximation to $\left|\lambda_{1}\right|$, where

$$
q_{n}=\min _{\|u\|_{n}}\|A \mu\| .
$$

From Theorem 3 of [2] it follows that there exist
$\left\{u_{n}\right\}_{n=1}^{\infty}$ such that the following conditions are satiefied:

1) $\mu_{n} \in R_{n},\left|\mu_{n}\right|=1$,
(II)
2) $\left|A u_{m}\right|=q_{n}$,
3) $\lim _{n \rightarrow \infty} \mu_{n}=\varphi_{n}$,
4) $\left(m_{m}, \varphi_{1}\right) \geqslant 0$ for $n=1,2,3, \ldots$.
1. In this section, we shall derive upper and lower bounde for $q_{n}-\left|\lambda_{1}\right|$. Before going further we note this useful fact:

Since $\left\|\varphi_{1}\right\|=1$, it follows from the definition of orthogonal projection that
(1)

$$
\begin{aligned}
& \mid \varphi_{1}-\varphi_{1}^{(n)}\left\|^{2}=1-\right\| \varphi_{1}^{(n)} \|^{2}, \\
& \mid g_{1}-\operatorname{mi}_{\varphi_{1}}\left\|^{2}=1-\right\|\left\|_{\varphi_{1}}\right\|^{2},
\end{aligned}
$$

Now, we present a group of two results, which is useful to have on record for later use.

Lemma 1. With the assumption of (I), the following inequalities are valid for each positive integer m :
a) $\lambda_{1}^{2} \cdot\left\|T^{-1(n)} \varphi_{1}\right\|^{2} \geqslant 2 \cdot\left\|^{(n)} \varphi_{1}\right\|^{2}-\left\|g_{1}^{(n)}\right\|^{2}$,
b) $\left|\lambda_{1}\right| \| T^{-1(n)} \varphi_{1}\left|\geqslant 1-\left|\varphi_{1}-{ }^{(n)} \varphi_{1}\right|\right|$.

Proof. a) It follows from the definition of $\varphi_{1}^{(n)}$ that

$$
\left\|\varphi_{1}-\left.\varphi_{1}^{(n)}\right|^{2} \leqslant \mid \varphi_{1}-\lambda_{1} T^{-1}(n) \varphi_{1}\right\|^{2} .
$$

We have therefore
(2) $1-\left\|\varphi_{1}^{(m)}\right\|^{2} \leqslant 1+\lambda_{1}^{2} \cdot \mid T^{-1(n)} \varphi_{1} \|^{2}-2 \lambda_{1} \cdot\left(\varphi_{1}, T^{-1(m)} \varphi_{1}\right)$. The proof of a) follows at once from (2), because

$$
\lambda_{1}\left(\varphi_{1}, T^{-1\left(n_{1}\right.}\right)=\left(A \varphi_{1}, T^{-1(n)} \varphi_{1}\right)=\left(\Phi_{1}{ }^{(n)} \varphi_{\varphi_{1}}\right)=\| \|^{(n)} \varphi_{1} \|^{2} .
$$

b) By Theorem 2 of [1] we have

$$
|A u|>\left|\lambda_{1}\right| \cdot|\mu| \text { for any } u \in D(A) \text {. }
$$

Letting $\mu=\varphi_{1}-\lambda_{1} T^{-1}$ chl φ_{1} we see that

$$
\left|\lambda_{1}\right| \cdot\left\|g_{1}-{ }^{(n)} g_{1} \mid=\right\| A \mu \|,
$$

whence follows

$$
\begin{equation*}
\left\|\varphi_{1}-{ }^{(n)} \varphi_{1} \mid \geqslant\right\| \varphi_{1}-\lambda_{1} T^{-1}\left(n_{\varphi_{1}} \|\right. \tag{3}
\end{equation*}
$$

It followa from $\left|g_{1}\right| \leqslant\left\|_{\mu}\left|+\left|\lambda_{1}\right| \cdot\left\|T^{-1}{ }^{\text {cn }} \xi_{1}\right\|\right.\right.$ that
(4) $\quad\left|\lambda_{1}\right| \cdot\left|T^{-1(n)} g_{1}\left\|\geqslant 1-\mid g_{1}-\lambda_{1} T^{-1(n)} g_{1}\right\|\right.$.

Now, if we insert (3) in (4), we obtain the ata-
ment b).
Corollary 1. For any n, we have $\left\|^{(n)} g_{1}\right\|^{2} \leqslant\left\|g_{1}^{(n)}\right\|^{2}$. Hence $\left\|\Phi_{1}-{ }^{(n)} \Phi_{1}\right\|^{2} \geq\left\|\varphi_{1}-\varphi_{1}^{(n)}\right\|^{2}$.

Proof: By the definition q_{n}, we have $q_{n} \geq\left|\lambda_{1}\right|>$ >0 and

$$
\begin{equation*}
\left\|T^{-1(n)} \varphi_{1}\right\| \leq \frac{1}{Q_{n}} \cdot\left\|(n) \varphi_{1}\right\| \tag{5}
\end{equation*}
$$

The corollary follows easily from (5) and Lemma 1.
Remark 1. From the totally completeness of $\left\{\Psi_{i}\right\}_{i=1}^{\infty}$ and the assumption $0 \overline{\mathcal{E}} \sigma(A)$ it follows that

$$
\lim _{n \rightarrow \infty}\left\|\varphi_{1}^{(n)}\right\|=\lim _{n \rightarrow \infty}\left\|(n) \Phi_{1}\right\|=1
$$

and therefore

$$
\lim _{n \rightarrow \infty}(n) \varphi_{1}=\lim _{n \rightarrow \infty} \Phi_{1}^{(n)}=\Phi_{1}
$$

Consequently, from Lemma 1 it follows $\lim _{n \rightarrow \infty}\left|\lambda_{1}\right|$. $. \mid T^{-1(n)} \varphi_{1} \|=1$.

Remark 2. There exists some $m_{0} \geqslant 0$ such that
$2 \cdot\left\|\left\|^{(n)} \varphi_{1}\right\|^{2}-\right\| \varphi_{1}^{(n)} \|^{2} \geq\left(1-\left\|\varphi_{1}-^{(n)} \varphi_{1}\right\|\right)^{2}$ for $n \geq n_{0}$.
Proof. From Remark 1 it follows that there exists n_{0}. such that $\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2} \leq \frac{2}{3} \cdot\left\|\varphi_{1}-(n) \varphi_{1}\right\|$ for $n \geq$ $\geq m_{0}$. It follows that
$\left\|{ }^{(n)} \varphi_{1}\right\|^{2} \geq 1-\frac{2}{3} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\| \quad$ for $m \geq n_{0}$. When this is substituted in $2 \cdot\left\|^{(n)} \varphi_{1}\right\|^{2}-\left\|\varphi_{1}^{(n)}\right\|^{2} \geq 2 \cdot\left\|^{(n)} g_{g_{1}}\right\|^{2}-1=3 \cdot\left\|^{(n)} g_{1}\right\|^{2}+\left\|g_{1}-{ }^{(n)} g_{1}\right\|^{2}-2$, we obtain the statement.

- An important tool in the proof of the next theorem is furnished by the following lemma.

Lemma 2. If we denote the product $\left(\mu_{m}, \varphi_{1}\right)$ by $\alpha_{1}^{(m)}$, then under the assumption (I) we have

$$
\left(x_{1}^{(n)}\right)^{2} \geq 1-\frac{a_{n}^{2}-\lambda_{1}^{2}}{\lambda_{2}^{2}-\lambda_{1}^{2}} \quad \text { for any } m
$$

Proof. By Lemma 1 of [1], we have

$$
\begin{equation*}
q_{n}^{2}-\lambda_{1}^{2}=\sum_{i=1}^{\infty}\left(\lambda_{i}^{2}-\lambda_{1}^{2}\right)\left\|u_{i}^{(n)}\right\|^{2} \tag{6}
\end{equation*}
$$

where $\mu_{i}^{(n)}$ is the orthogonal projection of μ_{m} on H_{i} and H_{i} is the closure of linear manifold generated by the eigenfunction of \mathcal{A} associated with the eigenvalue λ_{i}. Since $\left|\lambda_{2}\right|>\left|\lambda_{1}\right|$ and $\left\|\mu_{n}\right\|=1$, it follows from (6) that

$$
q_{n}^{2}-\lambda_{1}^{2} \geq\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\left\|\mu_{n}\right\|^{2}-\left\|\mu_{1}^{(n)}\right\|^{2}\right)
$$

so that

$$
\left\|u_{1}^{(n)}\right\|^{2} \geq 1-\frac{a_{m}^{2}-\lambda_{1}^{2}}{\lambda_{2}^{2}-\lambda_{1}^{2}}
$$

Now $\mu_{1}^{(n)}=\left(u_{n}, \varphi_{1}\right) \cdot \varphi_{1}$ and thus the proof is complete.
The following theorem is of fundamental importance.
Theorem 1. Let A be a DS-operator and $\left\{\Psi_{i}\right\}_{i=1}^{\infty}$
a totally complete system. Suppose the eigenvalues $\left\{\lambda_{i}\right\}_{i}$ of A satisfy the relations $0<\left|\lambda_{1}\right|<\left|\lambda_{2}\right| \leqslant\left|\lambda_{3}\right| \leq \ldots$ and λ_{1} is simple. Construct the sequence of numbers $\left\{q_{n}\right\}_{n=1}^{\infty}$ such that

$$
q_{n}=\min _{\substack{u \in \sum_{n} \\\|\mu\|=1}}\|A \mu\|
$$

where $R_{n}=. \mathscr{L}\left\{\Psi_{i}\right\}_{i=1}^{n}$.
Let ${ }^{(n)} \varphi_{1}$ be the orthogonal projection of a normalized eigenfunction Φ_{1} corresponding to $\boldsymbol{\lambda}_{1}$ on $\Omega_{n}=$
$=\mathscr{L}\left\{A \Psi_{i}\right\}_{i=1}^{n n}$ and n_{0} be a positive integer such that ${ }^{\left(m_{0}\right)} \varphi_{1} \neq 0$ and ${ }^{\left(n_{0}-4\right)} \varphi_{1}=0$. Then there exist constands C_{1} and $C_{2} \neq 0$ which do not depend on n such that
(7)

$$
c_{2} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2} \leqslant q_{m}-\left|\lambda_{1}\right| \leqslant c_{1}\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2}
$$

for $n \geqslant n_{0}$.
Proof. Suppose $n \geq n_{0}$. Then $\left\|^{(n)} \varphi_{1}\right\| \neq 0$. By the definition of g_{n}
(8) $\quad a_{n}-\left|\lambda_{1}\right| \leq C \cdot\left(\left\|^{(n)} \varphi_{1}\right\|^{2}-\lambda_{1}^{2}\left\|T^{-1(i n)} \mathscr{\varphi}_{1}\right\|^{2}\right)$,

where

$$
C=\| T^{-1}\left(n_{\varphi} \varphi_{1} \|^{-1} \cdot\left(\left\|^{(n)} \varphi_{1}\right\|+\left|\lambda_{1}\right| \cdot\left\|T^{-1(n)} \varphi_{1}\right\|\right)^{-1} .\right.
$$

From Lemma 1 and (8) it follows that
(9) $\quad q_{n}-\left|\lambda_{1}\right| \in C \cdot\left(-\left\|^{(n)} g_{1}\right\|^{2}+\left\|\varphi_{1}^{(n)}\right\|^{2}\right) \quad$ for $n \geq n_{0}$.

Since

$$
\frac{\|(n) g_{1} \mid}{\| T^{-1(n)} g_{1} \mid} \geq\left|\lambda_{1}\right|
$$

we have

$$
c \leq \frac{1}{2\left\|\lambda_{1} \mid \cdot\right\| T^{-1 / m \varphi_{1} \|^{2}}}
$$

From this and Lemma 1 we obtain

$$
C \leqslant \frac{\left|\lambda_{1}\right|}{2\left(1-\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|\right)^{2}} \quad \text { for } n \geq n_{0}
$$

Letting

$$
C_{1}=\frac{1}{2}\left|\lambda_{1}\right| \cdot\left(1-\left\|\Phi_{1}-{ }^{\left(\theta_{Q_{1}}\right.}\right\|\right)^{-2},
$$

from (9) and (1) it follows

$$
q_{n}-\left|\lambda_{1}\right| \leq c_{1} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2} \text { for } n \geq n_{0}
$$

To prove the second part of (7) we construct μ_{m} such that the conditions (J) are satisfied. Then

$$
\begin{aligned}
q_{n}^{2}-\lambda_{1}^{2} & =\left\|A \mu_{n}-A \varphi_{1}\right\|^{2}+2 \lambda_{1}^{2}\left(\mu_{n}-\varphi_{1}, \varphi_{1}\right) \geq \\
& \geq \lambda_{1}^{2}\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2}+2 \lambda_{1}^{2}\left(\alpha_{1}^{(n) 2}-1\right),
\end{aligned}
$$

where $\alpha_{1}^{(n)}=\left(u_{n}, \varphi_{1}\right)$.
Using Lemma 2, we have
$q_{n}^{2}-\lambda_{1}^{2} \geq \lambda_{1}^{2} \cdot\left\|\varphi_{1}-{ }^{(n)} \Phi_{1}\right\|^{2}-2 \lambda_{1}^{2} \cdot\left(q_{n}^{2}-\lambda_{1}^{2}\right) \cdot\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)^{-1}$, whence with the notation
$x=q_{n}-\left|\lambda_{1}\right|, a=\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}+\lambda_{1}^{2}\right)^{-1} \cdot \lambda_{1}^{2} \cdot\left\|\varphi_{1}-{ }_{\varphi_{1}}^{(n)}\right\|^{2}, b=2\left|\lambda_{1}\right|$ one finds

$$
\begin{equation*}
x(x+b) \geq a \tag{10}
\end{equation*}
$$

After some computation we find that the solution of (10) satisfies the inequality $\quad x=q_{n}-\left|\lambda_{1}\right| \geq$

$$
\begin{aligned}
& \geq C_{2} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2}, \quad \text { where } \\
& C_{2}=2\left|\lambda_{1}\right| \cdot\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \cdot\left(5 \lambda_{2}^{2}+3 \lambda_{1}^{2}\right)^{-1} .
\end{aligned}
$$

Thus the proof is complete.
Remark 3. Theorem 1 is valid in the case when λ_{1} is a multiple eigenvalue of A.

Renark 4. From the proof of Theorem l it follows that the right hand side of the inequality (7) is valid for any DS-operator such that $O \mathbb{O}(A)$.
2. Bearing in mind the considerations of the previous section, we now find a priori bounds for the approximations μ_{m} to an eigenfunction φ_{1}. To establish these bounds we require the following Lemma 3.

Lemma 3. Under the hypotheses as in Theorem 1, we have for $n \geq n_{0}$
(a) $\left\|A \mu_{m}-A \varphi_{1}\right\|^{2} \leqslant\left(q_{n}^{2}-\lambda_{1}^{2}\right) \cdot\left(\lambda_{2}^{2}+\lambda_{1}^{2}\right) \cdot\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)^{-1}$,
(b) $\left\|\mu_{n}-\varphi_{1}\right\|^{2} \leqslant 2\left(q_{n}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)^{-1}$,
(c) $q_{n}^{2}-\lambda_{1}^{2} \leqslant D \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|^{2}$,
where $D=\lambda_{1}^{2} \cdot\left(1-\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|\right)^{-2}$.
Proof. In a similar way, by methods analogous to those employed in the proof of Theorem 1, we can obtain

$$
\begin{equation*}
q_{n}^{2}-\lambda_{1}^{2} \leqslant \| T^{-1} \cdot\left(\varphi_{1} \|^{-2} \cdot\left(\left\|\varphi_{1}^{(n)}\right\|^{2}-\left\|^{(n)} \varphi_{1}\right\|^{2}\right)\right. \tag{11}
\end{equation*}
$$

From Lemma 1 and (1) it follows the inequality (c).
To prove (a) we write
$\left\|A \mu_{m}-A g_{1}\right\|^{2}=\left\|A u_{m}\right\|^{2}+\lambda_{1}^{2}-2\left(A \mu_{n}, A g_{1}\right)=$

$$
=q_{n}^{2}-\lambda_{1}^{2}+2 \lambda_{1}^{2}\left(1-\alpha_{1}^{(n)}\right),
$$

where $\alpha_{1}^{(\omega)}=\left(\mu_{n}, \varphi_{1}\right)$.
Since $\alpha_{1}^{(\omega)} \in\langle 0,1\rangle$, we see that
$\left\|A u_{n}-A q_{1}\right\|^{2} \leq q_{m}^{2}-\lambda_{1}^{2}+2 \lambda_{1}^{2} \cdot\left(1-\left(\alpha_{1}^{(n)}\right)^{2}\right)$,
and the inequality (a) follows from Lemma 2.
The proof of (b) follows at once from Lemma 2, because $\left(\alpha_{1}^{(n)}\right)^{2} \leqslant \alpha_{1}^{(n)},\left\|\mu_{n}\right\|=1$ and $\left\|\varphi_{1}\right\|=1$.

```
The following theorem is a consequence of Lemma 3.
```

Theorem 2. Under the hypotheses as in Theorem 1 there exist the constants C_{2} and C_{3} which do not depend on n such that for $n \geq n_{0}$

$$
\begin{array}{r}
\left|\lambda_{1}\right| \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\| \leq\left\|A u_{n}-A \varphi_{1}\right\| \leq C_{2} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\| \\
\left\|\varphi_{1}-\varphi_{1}^{(n)}\right\| \leq\left\|u_{n}-\varphi_{1}\right\| \leq C_{3} \cdot\left\|\varphi_{1}-{ }^{(n)} \varphi_{1}\right\|,
\end{array}
$$

where $\varphi_{1}^{(n)}$ is the orthogonal projection of φ_{1}. on $R_{n}=\mathscr{L}\left\{\Psi_{i}\right\}_{i=1}^{n}$.

Proof. The right sides of these inequalities folllow at once from Lemma 3. Since $\lambda_{1} \neq 0$ from the definition of orthogonal projection it follows

$$
\begin{aligned}
& \qquad \qquad A \mu_{n}-A \varphi_{1}\left\|^{2}=\lambda_{1}^{2}\right\| \frac{A \mu_{n}}{\lambda_{1}}-\varphi_{1}\left\|^{2} \geq \lambda_{1}^{2} \cdot\right\| \varphi_{1}-{ }^{(n)} \varphi_{1} \|^{2} \\
& \quad\left\|u_{n}-\varphi_{1}\right\| \geq\left\|\varphi_{1}-\varphi_{1}(n)\right\| .
\end{aligned}
$$

Remark 5. Theorem 2 is valid in the case when λ_{1} is a multiple eigenvalue of A.
3. In this section, we find a posteriori bounds for the errors in the approximations q_{n} and μ_{m} to the eigenvalue λ_{1} and the eigenfunction Φ_{1}, respectively.

Under the hypotheses as in Theorem 1, we construct the sequence $\left\{\mu_{m}\right\}_{m=1}^{\infty}$ such that the condition (I) is satisfied. To simplify our notation in this section let $\delta_{n}=\left\|A \mu_{n}-e q_{n} \mu_{n}\right\|$, where $e=\operatorname{sig} n_{1} \lambda_{1}$. Our next principal result is Theorem 3. An important tool in the proof of this theorem is furnished by the
following lemma.
Lemma 4. Suppose n is such that $\alpha_{1}^{(n)}>0$ and $\left|\lambda_{2}\right|>\dot{q}_{m}$. Then
(a) $a_{n}-\left|\lambda_{1}\right| \leqslant D_{i} \sigma_{n}^{2}$,
where $D_{1}=\frac{4 q_{n}^{2}+\lambda_{2}^{2}-\lambda_{1}^{2}}{q_{n} \cdot\left(\lambda_{2}^{2}-q_{n}^{2}\right)}$,
(b) $q_{n}-\left|\lambda_{1}\right| \geq D_{2} \sigma_{n}^{2}$,
where $D_{2}=\frac{1}{2}\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \cdot \dot{q}_{n}^{-3} \cdot\left(\sqrt{2}+\sqrt{\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2}+1}\right)^{2}$,
(c) $\left\|A \mu_{n}-A \varphi_{1}\right\| \leq D_{3} \delta_{n}$,
where $D_{3}=5 \lambda_{2}^{2} \cdot\left[\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-q_{2}^{2}\right)\right]^{-\frac{1}{2}}$,
(d) $\left\|A \mu_{n}-A \varphi_{1}\right\| \geq D_{4} \delta_{n}^{n}$,
where $D_{4}=\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)^{\frac{1}{2}} \cdot\left[\sqrt{2}\left|\lambda_{1}\right|+\sqrt{\lambda_{2}^{2}+\lambda_{1}^{2}}\right]^{-1} \cdot\left(\frac{\left|\lambda_{1}\right|}{\lambda_{n}}\right)^{\frac{1}{2}}$,
(e) $\left\|u_{n}-\Phi_{1}\right\| \leq D_{5} \sigma_{n}$,
where $D_{5}=5 \cdot 1 \lambda_{2} 1 \cdot\left[\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{m}^{2}\right)\right]^{-\frac{1}{2}}$.

Proof. Since $\lambda_{1} e\left|\lambda_{1}\right|$ and $\left\|\mu_{n}\right\|=q_{n}$, we have

$$
\begin{equation*}
\left\|A \mu_{n}-e q_{N_{n}} q_{1}\right\|^{2}=2 q_{n}\left(q_{n_{n}}-\left|\lambda_{1}\right| \cdot \sigma_{1}^{(n)}\right) \tag{12}
\end{equation*}
$$

where $\alpha_{1}^{(n)}=\left(\mu_{n}, \Phi_{1}\right)$.
If we subtract the following identity

$$
\left\|q_{1}-u_{n}\right\|^{2} \cdot q_{n}^{2}=2 q_{n}^{2}\left(1-\alpha_{1}^{(n)}\right)
$$

from (12), we obtain
(13) $2 \alpha_{1}^{(n)} q_{n}\left(q_{n}-\left|\lambda_{1}\right|\right)=y\left(y+2 q_{n} \cdot\left\|\varphi_{1}-\mu_{n}\right\|\right)$,
where $y=\left\|\mathrm{A} u_{n}-e q_{n} \varphi_{1}\right\|-q_{n} \cdot\left\|\Phi_{1}-\mu_{n}\right\|$.
Since $q_{n} \geq\left|\lambda_{1}\right|$, it follows that $y \geq 0$ and $\delta_{n}^{n}=\left\|\mathrm{A} \mu_{n}-e q_{n} \varphi_{1}+e q_{n} \varphi_{1}-e q_{n} u_{n}\right\| \geq y$.
Hence we have frox (13)
(14) $\left.2 \alpha_{1}^{(m)} q_{m}-\left|\lambda_{1}\right|\right) \leq \sigma_{n}^{n} \cdot\left(\delta_{n}^{\sim}+2 q_{n} \cdot\left\|\varphi_{1}-\mu_{n}\right\|\right)$.

It follows immediately from Lemma 3

$$
\left\|u_{n}-\varphi_{1}\right\| \leq 2 \cdot \sqrt{\frac{q_{n}}{\lambda_{2}^{2}-\lambda_{1}^{2}}} \cdot \sqrt{a_{n}-\left|\lambda_{1}\right|}
$$

Using this in (14), we obtain

$$
a x^{2} \leq c+b x,
$$

where
$x=\sqrt{q_{n}-\left|\lambda_{1}\right|}, a=2 q_{n} \sigma_{1}^{(n)}, b r=4 q_{n} \delta_{n} \cdot \sqrt{\frac{q_{n}}{\lambda_{2}^{2}-\lambda_{1}^{2}}}$. After some computation we may find that
$x \geq D_{1} \cdot \sigma_{n}^{2}$. This proves (a).
To prove (b) observe that

$$
\begin{equation*}
\delta_{n} \leqslant\left\|A u_{n}-e \cdot q_{n} \cdot g_{1}\right\|+q_{n} \cdot\left\|g_{1}-u_{n}\right\| . \tag{15}
\end{equation*}
$$

By the definition of n_{0} in Theorem 2, we have that
$n \geq n_{0}$. Since $q_{n} \geq\left|\lambda_{1}\right|$, it now follows from Lemma 3 that

$$
\left\|\varphi_{1}-\mu_{n}\right\| \leq \frac{2 \cdot \sqrt{q_{m}}}{\sqrt{\lambda_{2}^{2}-\lambda_{1}^{2}}} \cdot \sqrt{q_{m}-\left|\lambda_{1}\right|} .
$$

Assume that $q_{n}>\left|\lambda_{1}\right|$. Then, by (15) and (12)

$$
\begin{equation*}
\delta_{n}^{\sigma} \leq c \cdot \sqrt{q_{n}-\left|\lambda_{1}\right|}, \tag{16}
\end{equation*}
$$

where

$$
C=2 \cdot \sqrt{\frac{\ell_{m}^{3}}{\lambda_{2}^{2}-\lambda_{1}^{2}}}+\sqrt{2 q_{m}} \cdot \sqrt{1+\frac{\left|\lambda_{1}\right|\left(1-\alpha_{1}^{(n)}\right)}{\lambda_{m}-\left|\lambda_{1}\right|}} .
$$

Since $\alpha_{1}^{(m)}>0$, we see from Lemma 2 that
(17) $1+\frac{\left|\lambda_{1}\right|\left(1-\alpha_{1}^{(m)}\right)}{\alpha_{n}-\left|\lambda_{1}\right|} \leq 1+\frac{\left|\lambda_{1}\right|\left(q_{m}+\left|\lambda_{1}\right|\right)}{\lambda_{2}^{2}-\lambda_{1}^{2}}=\frac{\lambda_{2}^{2}+\left|\lambda_{1}\right| \cdot q_{m}}{\lambda_{2}^{2}-\lambda_{1}^{2}}$.

The inequality (b) now follows from (16) and (17) in the case of $q_{n}>\left|\lambda_{1}\right|$. It is readily verified that (b) is also valid in the case of $\alpha_{n}=\left|\lambda_{1}\right|$.

The proof of (c) and (e) follows at once from (a)
and Lemma 3 because $q_{n}+\left|\lambda_{1}\right| \leq 2 q_{n}$
It is readily verified that

$$
\left\|A \mu_{n}-A \varphi_{1}\right\|^{2} \geq q_{n}^{2}-\lambda_{1}^{2} \geq 2 \cdot\left|\lambda_{1}\right| \cdot\left(q_{n}-\left|\lambda_{1}\right|\right)
$$

and from (b) it follows the inequality (d). This completes the proof.

From Lemma 4 (c) and from $\delta_{n}^{n} \xrightarrow[n \rightarrow \infty]{ } 0$ it follows
$\lim _{n \rightarrow \infty} A \mu_{n}=A \Phi_{1}$. Consequently, there exists n_{1} such that for $n \geq n_{1}$
(18) $\operatorname{sign}\left(A \mu_{n}, \mu_{n}\right)=\operatorname{sign} \lambda_{1}=e$.

Therefore
(19) $\left\|A \mu_{m}-e q_{n} \mu_{n}\right\|^{2}=2 q_{n} \cdot\left(q_{m}-\left|\left(A \mu_{m}, \mu_{n}\right)\right|\right.$ for $n \geq n_{1}$.

From Lemma 4 and (19) we deduce the following

Theorem 3. Under the hypotheses as in Theorem 1 there exist the constants $K_{1}, K_{2}, K_{3}, K_{4}, K_{5}$ which do no.t depend on n and an integer n_{1} such that for $n \geq n_{1}$

$$
\begin{gathered}
K_{2} \cdot \varepsilon_{n}^{2} \leq a_{n}-\left|\lambda_{1}\right| \leq K_{1} \cdot \varepsilon_{m}^{2}, \\
K_{4} \cdot \varepsilon_{n} \leq\left\|A \mu_{n}-A \varphi_{1}\right\| \leq K_{3} \cdot \varepsilon_{n}, \\
\left\|\mu_{n}-\varphi_{1}\right\| \leq K_{5} \cdot \varepsilon_{n}, \\
\text { where } \varepsilon_{n}=a_{n}-\left|\left(A \mu_{n}, \mu_{n}\right)\right| .
\end{gathered}
$$

Remark 5. From (18) it follows that
$\lim _{n \rightarrow \infty}\left[q_{n} \cdot \operatorname{sig} n\left(A_{\mu_{n}}, \mu_{n}\right)\right]=\lambda_{1}$.
4. In all previous sections we have been concerned with setting up error bounds of approximations for λ_{1} and φ_{1}.

In order to obtain error bounds for $\lambda_{i}, i>1$, we shall assume that
(III) λ_{i} is not an accumulation point of the spectrum $\sigma(A)$.

For the sake of simplicity, we shall suppose that
(IV) λ_{i} is simple and $0 \boldsymbol{\epsilon} \sigma(A)$.

Select μ in such a way that

1) $\mu \in \sigma(\mathcal{A})$,
(v)
2) $\left|\mu-\lambda_{i}\right|<|\mu-t|$ for any $t \in \sigma(A), t \neq \lambda_{i}$.

From Theorem 3 of [11 it follows that $\lim _{n \rightarrow \infty} q_{n}=$.
$=\left|\mu-\lambda_{i}\right|$, where $q_{m}=\min _{\|\mu\|=1}^{n}\|A \mu-\mu \mu\|$.
Then $\mu+q_{m}$ or $\mu-q_{n}$ is the approximation to λ_{i}. Denote this approximation by $\lambda_{i}^{(n)}$. Let Φ_{i} be a normalized eigenfunction corresponding to λ_{i}, and $\varphi_{i}^{(m)}$ and ${ }^{(n)} \varphi_{i}$ orthogonal projections of $\boldsymbol{\varphi}_{i}$ on $R_{m}=$ $=\mathscr{L}\left\{\Psi_{i} 3_{j=1}^{m}\right.$ and $\mathbb{\Omega}_{m}=\mathscr{L}\left\{A \Psi_{i}\right\}_{j=1}^{n}$, respectively.

If we apply the above results with ($A-\mu I$)
in place of A, then we obtain error bounds of approximations for λ_{i} and φ_{i}. As an immediate consequence of Theorems $1,2,3$ and the following Lemme 5 , we have

Theorem 4. Under the assumptions (III) - (V) we construct $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ such that the following conditions are satisfied:

1) $u_{n} \in R_{n},\left\|u_{n}\right\|=1$,
2) $q_{m}=\left\|A \mu_{n}-\mu \mu_{n}\right\|$,
3) $\left(\mu_{n}, \mu_{m+1}\right) \geq 0$.

Then there exist an integer m_{1} and the constants C_{1}, $C_{2}, C_{3}, C_{4}, C_{5}, K_{1}, K_{2}, K_{3}, \dot{K}_{4}$ which do not depend on n such that for $n \geq m_{1} \quad *$
(a) $c_{2} \sigma_{n}^{\prime 2} \leqslant\left|\lambda_{i}-\lambda_{i}^{(n)}\right| \leqslant c_{1} \sigma_{n}^{2}$,
$r_{m} \leqslant\left\|\mu_{m}-\Phi_{i}\right\| \leqslant C_{s} \sigma_{m}^{r}$,
$C_{5} x_{m} \leq\left\|A_{m}-A \Phi_{i}\right\| \leq C_{4} \delta_{n}$,
where $\delta_{\mu}^{n}=\left|\varphi_{i}-{ }^{(n)} \varphi_{i}\right|$ and $n_{m}=\left|\varphi_{i}-\varphi_{i}^{(n)}\right|$.
(b) $K_{2} \varepsilon_{m}^{2} \leqslant\left|\lambda_{i}-\lambda_{i}^{(n)}\right| \leqslant K_{1} \varepsilon_{m}^{2}$,

$$
\begin{aligned}
& \left\|u_{m}-g_{i}\right\| \leq K_{3} \varepsilon_{n} \\
& \left\|A u_{n}-A g_{i}\right\| \leq K_{4} \varepsilon_{n}
\end{aligned}
$$

where $\varepsilon_{n}=q_{n}-I\left(A \mu_{n}, \mu_{n}\right)-\mu I$
and $\lambda_{i}^{(n)}=\mu+q_{n} \cdot \operatorname{sign}\left[\left(A \mu_{n}, \mu_{n}\right)-\mu\right]$.
Lemma 5. Let ${ }^{(n)} \boldsymbol{g}_{i}{ }^{(f)}$ be' the orthogonal projecttron of Φ_{i} on $\Omega_{n}^{(n)}=\mathcal{L}\left\{(A-\mu I) \Psi_{i}\right\}_{j=1}^{m}$. Under the assumptions (III) - (V) we have

$$
D_{1} \cdot\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}\right\| \leq\left\|g_{i}-{ }^{(n)} \varphi_{i}^{(c c)}\right\| \leq D_{2} \cdot\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}\right\|,
$$

where

$$
\begin{aligned}
& D_{1}=\left|\frac{\lambda_{i}}{\lambda_{i}-\mu}\right| \cdot \inf _{t \in \sigma(A)}\left|1-\frac{\mu}{t}\right|, \\
& D_{2}=\left|\frac{\lambda_{i}}{\lambda_{i}-\mu}\right| \cdot \operatorname{mun}_{t \in \sigma(A)}\left|1-\frac{\mu}{t}\right| .
\end{aligned}
$$

Proof. It follows by the definition of ${ }^{(n)} g_{i}(f)$ that
(20) $\left\|g_{i}-{ }^{(n)} g_{i}^{(n)}\right\|=\min _{\mu<R_{n}}\left\|g_{i}-(A-\mu I) \mu\right\|$.

Since $0 \in \sigma(A)$ and $\mu \in \sigma(A)$, there exist A^{-1} and $(A-\mu I)^{-1}$. Then
(21) $\left.\left\|g_{i}-(A-\mu I) \mu\right\|=\| B[A-\mu I)^{-1} \varphi_{i}-A \mu\right] \|$, $\mu \in R_{n}$, where $B=(A-\mu I) A^{-1}$ and I is the identity operator. Letting $\mu=A^{-1} \cos g_{i} \cdot \frac{\lambda_{i}}{\lambda_{i}-\mu}$, it follows from (20) and (21) that
(22) $\left\|g_{i}-{ }^{(n)} \Phi_{i}(\mu)\right\| \leq\left|\frac{\lambda_{i}}{\lambda_{i}-\mu}\right| \cdot\left\|B\left(\rho_{i}-{ }^{(n)} \Phi_{i}\right)\right\|$.

Then, since A is a DS-operator, we have
(23)
$\left.\|B\| \leq \min _{t \in \delta(A)} 11-\frac{\mu}{t} \right\rvert\,$.
(24) $\|B v\| \geq\|v\| \cdot \inf _{t \in(A)}\left|1-\frac{\mu}{t}\right|$ for any $v \in \Omega(A)$.

Thus, by (23) and (22)

$$
\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}(n)\right\| \leqslant D_{2} \cdot\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}\right\| .
$$

It is readily verified that
(25) $\left\|\varphi_{i}-{ }^{(m)} \varphi_{i}^{(\mu)}\right\|=\min _{\mu \in \mathbb{R}_{m}}\left\|B\left[\varphi_{i}-A \mu\right]\right\| \cdot\left|\frac{\lambda_{i}}{\lambda_{i}-\mu}\right|$.

It follows now from (24) and (25) that

$$
\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}(\mu)\right\| \geq D_{1} \cdot\left\|\varphi_{i}-{ }^{(n)} \varphi_{i}\right\| .
$$

Remari 6. In the case of multiple eigenvalue Theorem 4 is valid, if μ_{n} satisfies $\left.3^{*}\right)\left(\mu_{n}, \mu_{n+1}\right) \geq$ $\geq \varepsilon>0$ in place of 3).

References
[1] K. NAJZAR: On the method of least squares of finding eigenvalues of some symmetric operators, Comment.Math.Univ.Carolinae 9(1968), 311-323.
[2] K. najzar: on the method of least squares of finding eigenvalues and eigenfunctions of some symmetric operators,II, Comment.Math. Univ.Carolinae 11(1970),449-462.
[3] S.G. MICHLIN: Prjamyje metody v matematiceskoj fizike, 1950.
[4] N.I. ACHIEZER - I.M. GLASMANN: Theorie der linearen Operatoren in Hilbert-Raum, 1960.
[5] A.E. TAYLOR: Introduction to Punctional analysis,
1958.

Matematicko-fyzikální fakulta

Karlova Universita
Malostranské nám. 25
Praha 1, Ceskoslovensko

