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Commentatione8 Mathematieae Universitatis Carolinae 

11,4 (1970) 

STABILITY CF THE METHOD OF LEAST SQUARES FOR FINDING THE 

EIGENVALUES OF A SYMMETRIC OPERATOR 

K. NAJZAR, Praha 

In [1,2,31, we studied the method of least suqares for 

approximating the eigenvalues and eigenfunctions of a DS-o-

perator. In this paper, we shall deal with the stability of 

this method for finding the eigenvalues. 

Let A be a DS-operator whose domain 3)(A) is dense 

in the separable Hilbert space H , i.e., A is a symmetric 

operator in H such that the set of its eigenvalues is of 

the first category on the real axis and the spectrum 6* (A) 

of A is the closure of this set. Let (U, be a real number 

such that the following conditions be satisfied: 

(i) l) (t* g er(A) . 

2) There exists an eigenvalue A* of A such that 

For the sake of brevity we shall sometimes write A^, 

instead of A ~(ttl ., where I denotes the identity opera

tor in H . The principle of finding A* by using the met

hod of least squares can be outlined as follows. 

By Theorem 3 of [ 1 ] we have 

where 

641 -



to\ IAW- fiLAJLJ1 

\2) q ss /muru -. rx 

and thus /U. •*• £ or (U, - £ is the approximation to -R-* 

(cf.[13,1.2.1 and £33). The number 3* is the smallest ei

genvalue of the algebraic eigenvalue problem 

(3) (A^ - &&„,)"- ** 0 , 

where A ^ and Ji^ are symmetric matrices 

An, m itA^ft , Aptyht + mi > 

The matrix J ^ is known as the Gram matrix of 3^,"* 

"'7 ^Ci • Since %. 1 ... 7 Y ^ are linearly independent, Ji^ 

is positive definite. Gn the basis of the assumptions rela

tive to £1- , it follows that A ^ (as the Gram matrix of li

nearly independent vectors) is a positive definite matrix. 

Let if* & *£* & ... & *£** be the eigen

values of (1). Then q ^ - ef** . Since 5 ^ ^ #6 # ^ , 

the sequence *£ 6^ } % m 4 ^B monotone decreasing. It 

follows that 

(4) interim JUh,*?*- C^-X;)* . 

In numerical work, it is usually impossible to carry 

out all required calculations with unlimited precision. 

Thus, the actual results 6 £ one obtains, do not sa

tisfy (3), but rather 

(5) c'VrJ-(*
cW^-" , 
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where T^ and A ^ are symmetric matrices. 

If H T^ I is small, one expects that S ^ * will 

also differ only slightly from 6^n') for *% 2z m,0 . Re

garding (5) as a perturbation of (3), one may then say, loo

sely speaking, that the method for finding A - defined by 

(2) and (3) is stable if tfj^ is not very sensitive to 

small perturbances T^ and A/fv -

In Section 1, we shall define the stability of the met

hod of least squares for finding A« defined by (2) and 

(3). We shall formulate a necessary and sufficient condition 

for the stability. In Section 2, we give conditions which 

guarantee that the method of least squares for finding &-

is stable in the sense of Michlin [41. 

1. Let (A*?* & p , ^ & ... £ ((JL^ be an enumera

tion of eigenvalues of the problem (5)• Denote the smallest 

eigenvalue of A ^ and Jd^ by .A"1* and i'"* 9 respecti

vely. Since Jt^ and 23^ are positive definite matrices, 

it follows that X^ > 0 and ttm> > 0 for any positi-

ve integer tn. . 

The definition of the stability of the method of least 

squares for finding the eigenvalues is as follows. 

Definition 1. Let 1^ and A ^ be symmetric matrices. 

Let {*,%* and &(m* be the smallest eigenvalues of (3) 

and (5), respectively. The method of least squares for fin

ding %* defined by (2) and (3) will be said to be stable, 

if there exist positive constants sp,^ /c , ,6, a which do 

not depend on m, such that 
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for every 1^ , 4 satisfying the following inequalities 

where II V II denotes the Euclidean norm of T^ 

Let us ,now recall from [41 the terminology about the 

strongly minimal system in H . 

Definition 2 (cf. Michlin [4 1 , p.20). Let there be 

given a linearly independent system i<p^ î *!̂  • Denote the 

smallest eigenvalue of the Gram matrix of g> , .*-., %, by 

cfn> . This system Ify i£.^ will be said strongly mini

mal in H if <m* <£* > 0 . 

Remark 1. Let <Cd>. if* „ be an orthonorrral system.Then 

•i/nf ci"1, -= 4 and consequently *f^ J ^ . is a strongly 

minimal system in H 

The following theorem is needed. 

Theorem 1. Let there be given two Hilbert spaces ^ , 

VC with the following properties: 

a) JU, e £€. -a-ss> u* e 2tf . 

b) There exists a constant K such that 

Jl-u, $z £s K - IAJU 11̂  for any AA, e 26^ , 

where B.O.IL and 9-U/IL are norms on o£ and ?£ , 

respectively. 

Let -Cl^ ?f^ , f^ € 9C be a strongly minimal system in 

96 . Then the system ^^Ts^ ^8 a l s o strongly minimal 

in #£ . If we denote the smallest eigenvalue of the matri-

ces "J"***-***- "* "%>*>>**&-< by <' 
and t, respectively, then we have 

- 644 -



Proof: Michlir. [41,p.25. 

Since (to 5" 6 (A) , we see that (A AJL^ A IT) is a 

scalar product on 2>^A) . Consequently, \AJL 1̂  as (A AJL9 A AJL) 

is a norm on 3)(A) . The complete hull of 0(A) with the 

norm ^AJLIA will be denoted by H,, . From the definition of 
1 1 

X> it follows that 

If we apply Theorem 1 with H in place of X^ and H in 

place of ?ft .we obtain the following 

Lemma 1. Let i^l^^ ? %, « 3)CA) be a strongly mi

nimal system in H , Then the system i A^ "H£|f̂  . is strong

ly minimal in H and the smallest eigenvalues X^* and tf 

satisfy the following relation 

W* £ (tu-X-)1 - t™ . 

As an application of the result of Theorem 1, we have 

Lemma 2. Let {*£. }«> T. e 3)CA) be a linearly in-
"' «t» 'P M *j J* *fr 

dependent system such that the system {A^ W^ 1^M^ is 

strongly minimal in H for some ^ W 6"CA) . Then the sys

tem -C A^ ¥4 } * m ^ is strongly minimal in H for every 

^ € 6-CA) . 

Proof: Choose any ^ g" & CA) . Let \AJL ft » HAtt.-tt I 

and R^l^ » 8A^ .u- I . Since <u,0 € ^ C A ) , fl^c- R̂  en§ 

H-uJ^ are the norms on JDCA). The complete hull of 3)CA) 

with Wx-u tt^ and H-a-^ will be denoted by ^ and 3^ • 

respectively. Obviously 
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A ч*. - A^u. + ("<«.-(*„) • A ^ Л ^ u . 

and hence 

>f 

From this it follows that 96, c #£. . The conclusion of 

this lemma now follows from Theorem 1. 

The following fundamental result gives us a necessary 

and sufficient condition for the stability. 

Theorem 2. Let A be a DS-operator in Hilbert space 

H and let 4Xi }j°m^ be a totally complete system. 

Then, with the assumptions of (1) the method of least squa

res for finding X- defined by (2) and (3) is stable if and 

only if the system i^i^mi *s strongly minimal in H . 

When this condition is fulfilled, we can choose jt, £, /fc? 4> 

in Definition 1 as follows: 

1 

i lAu, Y, I2 
Q , 2 . н

^t~ -T 
> 

where /c and h are arbitrary numbers in CO, CAi -~(ti) • 4 ) 

and ( 0 , 4 ) , respectively, t m <inf i/ 

Proof: Suppose that the method of least squares for fin

ding Xi, is stable but that the system i^C^lZm 1 *
s n o

* 

strongly minimal in H . Then, by Definition 1, there exist 

positive constants -p, j i >& such that 

(6) lar^-^iA^.i^i + ^ . j f ^ l 

for symmetric matrices 1̂ , and A^ satisfying 
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Since AM$ t ? * m 0 , there i s an inf in i te set M of 

positive integers such that <m$ t ^ -» 0 and /* > 

> 2 t ^ > 0 for m, € M . Choose V * 0 and I x 

. Cm> 
< 

- - 2 tf^ • E ^ for every <m. e M , where E,^ is the 

identity matrix. In this case it follows from (6) that 

< - <-Г' * г
 2 * *-í » "* в м 

Hence, since JU#n, 6.*™*= (<u,~&. ) z
 > 0 and «kf i

6
"^ (7, 

there exists some /m e .M such that 

<*«* > {i^-X.f>0 . 
This last inequality shows that the eigenvalues of the pro

blem 

(7) J^u, -«~ ' ^ + 4 ^ ) * . - 0 

are positive. 

Since the »/i
/n
, is a positive definite matrix, we see that 
© 

every eigenvalue of the problem (1C) is one of the problem 

and < зonveгsely, 

Note that 

m~0 

i 

1T|» 
O 

+ 4 m Î«Л /m-0 

-1 
4гty 

i s a symmetric matrix. Consequently, 
*ff|» is positive de-

finite. It follows that 

(8) f(4*> - £fl JU,,4A,) > 0 

for every x(- + 0 • 

We know that t. la the smallest eigenvalue of 

J-Uv . If we denote a normalised eigenfunction of Jimif 

corresponding to t. by tr% we have 
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4 

Let AJL 9 A* tr . Then 

^m,""* K? cJL. +
4m. )<* m-t -JL* v . 

"n> m,Q /m^ m%,c' " -j '"tn^ " 
Therefore it' follows 

f(^)~CQ^*t,^)«- t ^ ' flvH1< 0 . 

This contradicts the inequality of (8). 

Conversely, suppose now that i^i^Tsi *
s a 8

"
tron
fi--y -Mi

nimal system in H . For the sake of simplicity, we shall use 

the notation 

F ( C ъ ) m " " i " - * 
*

 7 І]>4Л,,44,) 

where C, D are (m x at) real matrices and <a is a vector. 

It follows from Lemma 1 that 

(9) -vw-f Xcf* > ( < < 4 - ^ >*. t , 

where t * <tmf if*1* > 0 . 
/ft T 

Choose K and /$ so that 

(10) 0 < K < (fl>- X^)Z- t , 0 < A> < t . 

Suppose that T^ and A are symmetric matrices such 

that 

(ii) * £ > - * * , HA^ft & * . 

From (9), (10) and (11) it is easy to see that (J^ + »4h. ) smd 

(ft^r** A^) are positive definite matrices. 

Consequently, 

4 H<*tt»<f ^ /n-> > 
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(12) d*-. mum, T(An+ ~\.,^.*Au.) . 
' P^u.rt-B't ^* *n* ? *n* m*? 

Choose nr and <ur such t h a t I or I ss i U<wl= 1 and 

^ - -~f"V,^t,^) > 

Hence, by (12) 

^1 - ° i C31L.*-,«•;-14^1 ~ ° ' 
whence 

<*> ,-«*>. l E I + ^ r - U I 
^ ~ ̂  " f^*-,*-;- I 4 » l ' 

Since ( fi^v,v)2: t'"* > t and 5™ £ 0™ , it follows 

from (10) and (11) that 

It is easily verified that 

^ " 1*FC^,^,«r) 

Since 

Ft^t,^,^) * C , 

1 

IFC^,^,*-)! -- - - ^ - < £ < 4 

and 111", I* i^-^f-t. * «J"->. tf* , 

we find that 

*»> > q,C"V - I K I > 0 

^ c * I-4.-.I ' 
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Therefore 

This, together with (13), leads to the second assertion of 

the theorem. 

2. In this section we shall investigate the stability 

of the method of least squares in the sense of Michlin. As 

to the mathematical formulation and to some assumptions we 

shall use the book of o.G. Michlin C4J. 

For each m ** ^ £ ? ,, . let H^ be a separable 

complex Hilbert space with the scalar product (x,<y.) , «* > 

<u> e H ^ . Let A ^ and JB^ be two operators in the Hil

bert space H ^ with the following properties: 

ac) A ^ and 3^ are self-adjoint and positive defini

te operators on H ^ into R . 

(i ) A"" and B^-s- A"* E ^ A^f are compact opera

tors. 

Since the operator A ^ JB^ is compact on H ^ ,we can ar

range the eigenvalues ^ &1 ?•- *» of the problem 

(15) ( A * - e ^ ) * - 0 

in an increasing order 

0 «-" <5f° ̂  61C*> & . . . . 

We will consider "the approximation eigenvalue problem" 

(16) -^+C>-^(Bm.+ J/n,)3x=.7 , 

where 1^ and A ^ are bounded and self-adjoint operators 

on H ^ . Let fti *-» (tt-̂  *-* • * * be an enumeration of 
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2 
~nъ 

eigenvalues of (16). S.G. Michlin defines the stability of 

the processes for finding the k-th eigenvalue of (15) as fol

lows: 

Definition 3 (Michlin £4J,p.260). Let T^ and A^ be 

bounded and self-adjoint operators on H ^ with the follo

wing properties: 

1) A^ -«- B ^ and A^* 1^ are positive definite 

operators on H/fV . 

2) 7L* t * * ! ! ^ ^ ! * * 2L ) (JL + c >"* 
#71' '7I» I1!.* •71' /1V f* 

is compact on H^ , where I is the identity operator on 

H^, and 

Then the process for finding the k-th eigenvalue of (15) will 

be said to be stable, if there exist three positive numbers 

^f %J ** wn*cn (3° n0"t depend on n% such that, if //£, I .£ 

£ K , tYl** 1,1, ... , then 

We now state - without proof - the following basic result. 

Theorem 3 (Michlin [43,p.260). Let C C. . £ be con-
• ' ' '" 1 * X > 3 

stents (which do not depend on tv )such that 

3) eg* & cz . 

Then the process for finding the k-th eigenvalue eg0 of 

the problem (15) is stable. The first condition is necessary 

for the stability. 
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Remark 2. It follows from the proof of Theorem 3 (in 

L4]» p.263) that 

C, ' * 1-/3 ' * 4-/3 

where /3 is an arbitrary real number in (0,4) . 

Let the assumptions of Section 1 be satisfied. In the 

case that H ^ is an n-dimensional Euclidean space we can 

represent A„ and J^ by (onxan) matrices A M and & . t 

respectively. Thus, we can consider the problems (3) and (5) 

in place of (15) and (16), respectively.lt is now easily ve

rified that the above conditions oc ) and fl ) are satisfied. 

Then the method of least squares for finding A* defined by 

(2) and (3) will be said to be stable in the sense of Mich-

lin, if the process for finding the first eigenvalue G™' 

of (15) is stable in the sense of Definition 3. 

From Theorem 3 we obtain the following result. 

Theorem 4. Under the hypotheses of Theorem 2 the method 

of least squares for finding X- defined by (3) and (5) is 

stable in the sense of Michlin, if and only if the system 

4Aw, 9^ l^m ^ is strongly minimal in H for some real 

(UL0 e 6r(A) . 

Proof: Firstly, we verify that the conditions of Theorem 

3 are satisfied for M, ** 4 . Then, it follows that the condi

tion 1) of Theorem 3 is necessary and sufficient for the sta

bility. 

Since <T » %L , the sequence \ G^ } ^ m ^ is mono

tone decreasing. Consequently, 

652 -



& On,) * <:*) flA«, % B 

and -Sn,f € T ^ > » *->* 6 ^ » (ft - A • >* . 

Letting 

c . BA~ y i ' * 

we see that the condition of 3) is fulfilled. 

Now> Jl~ an<5 ^3 a r c positive definite matrices. 

Therefore it is easily verified that 

COL*..,*,) (tLvLv) ^ 
( 1 7 ) <* » m «*> ? for AM e X , 4+ * 0 

4 — * * 

where v - AJ U. and S^ - A? £ L J C * . 
'Я. '<n. 

4 
It follows from 3) that ""pZmJ is the largest eigenva-

lue of ty^ . Hence, by (17) 

<***,«.) ~^ fop »***>"+°-
Since iwf ( f ^ * (jCt-A*)* > 0 , the cond i t ion 2) of Theo-

/TV "I i^ 

rem 3 i s s a t i s f i e d with 

* c^-a^)* • 
Now, II«Â  J — A&& 1 where XT' is the smallest ei

genvalue of the symmetric and positive definite matrix A^ * 

The assertion of our Theorem follows at once from Lemma 2. 

As a consequence of Theorem 4, Lemma 1 and Remark 2 we 

have 

Remark 3» With the assumptions of Theorem 4, let <35r-t£̂ .f 

be a strongly minimal system in H . Then the method of least 
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squares for finding A- defined by (3) and (5) is stable 

in the sense of Michlin. In this case we can choose j**, &; 

/t as follows: 

_ , i .y % i z 
A 4 
t 1 -ß 

V- f %- C<u.-^)a 

H, ss t • /3 9 

where t -» -t/jaf 4 "* and /$ is an arbitrary number in 

(0,1) . 

Remark 4. From the assumptions oc), (I) and 2) of 

Theorem 3 it follows that S K A ^ ) -» H ^ and A ^ is a self-

adjoint and bounded operator on H ^ .Since A ^ ia a com

pact operator on H ^ ,it follows that the eigenvalues of A ^ 

form a finite set. Consequently, H ^ is finite dimensional. 
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