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CONCERNING ALMOST DIVISIBLE TORSION FREE ABELIAN GROUPS
Ladislav PROCHAZKA, Praha

A torsion free group G (all groups here are suppo-
sed to be abelian) will be called almost divisible if the
set of all positive primes 1 with n G + G 1is finite.
In this note we shall give some conditions that are neces-
sary and sufficient for an almost divisible group G to
be completely decomposable. In the paper [2] of D.K. Har-
rison (see Proposition 5.2) such necessary and sufficient
conditions are formulated for the groups of finite rank.
But it was shown later (see [3]) that these conditions are
not sufficient in general. However, the remark following
Theorem 2 shows that the Harrison’s conditions are suffi-
cient whenever the corresponding type set is linearly orde-
red.

If G 1is a torsion free graup, then X (G) will de-
note the type set of all non zero elements in G ; G is
said to be homogeneous of the type 4 if ¥ (G) consists
of one element 4« only. For a type 4 and a prime 42 the
relation wt (f2) = oo means that in any height belonging
to 44 the 4 -height is 0o ; the symbole G (« ), G*(wx)

?
and G** () represent the subgroups of G defined in
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{1,§42]. The renk of a group G is denoted by x (G) and
"1& /G) stands for its 4 -rank (see [5]). But in this
note we shall use the relation %, (G) = 0 only; this
last relation says that for any finite set M € G the
v -primary component of the torasion group {M}*/fMi is
reduced ( {M},  denotes here the least pure subgroup of
G containing M ).

First of all we shall prove the following helpful as-
sertion.

Lemma. Let G be an almost divisible torsion free
group and let, for a type « € ¥ (G),the following con-
ditions be fulfilled:

(a) The group G () / G*(«) ia torsion free and
belongs to some Baer’s class I ; .

(b) for any prime o the inequality «(p)%* oo im-
plies

Itﬂ(G(M)/G*(ﬂb)) =0 .
Then the group G¥* () is a direct summend of G () ,
G(w)= G, + G*(w), where G, is completely decom-

posable and homogeneous of the type « , or G, = 0 .

H
Proof. If G*(w) = G(ur) ,then G, = O , therefore

we may suppose that G*(w) +4= G () . The group G («)

as a pure subgroup of G  is likewise almoat divisible

and so is the factor group & = G (e ) / G* () as well.

In view of (a), the group [} ia toraion free and the

type of any of its non gero elements ia = « , Thus, if f

is-a prime with w (f2) = co0 ,then 4;? = G. But if

M () % 00 then by (b) £, (G) = 0 .

In the last case, each pure rank one subgroup of G s
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of .zero f1 -rank (see [4,Corollary 2)]), therefore each non
zero element of G has a finite f -height in G (see
[6,Lemma 6.1]1). Now we deduce from the finiteness of the
set of all primes o with . (o) = 00 that @ is homo-
geneous of the type « . Thus the inequality 41.3 - G
implies wt (pu) # 0o and therefore Kg (G)=0.8y (a),
—G" belongs ta some Baer s claas 1';‘ and in view of
[4,Corollary 41 G is completely §ecomposab1e. Evident-
ly, 4 is the type of any element g € G («) = G*(w),
hence, according to the Baer’s lemma [1,the nate following
Theorem 46.5] G* («) is a direct summand in G () .
Thus we have G(u) = G, + G* ), G, = Glw) /C* ) =T,
therefore G“ is completely decomposable and homogeneous
of the type st .

Now we are in a position to prove a theorem concerning
almost divisible groups with the linearly ordered type set
(in natural order of the types).

Theorem 1. Let G be an almost divisible torsion free’
group with the linearly ordered type set ¥ (G). Then G
is completely decomposable if and only if for any « &€ ¥(G)
the condition (a) together with the condition

(b*) Ibﬁ(G /G*x )= 0 whenever w () o= oo
are fulfilled. )

Proof. It G is conpletely'dccompoaable and G -45 X;
is a complete decomposition of G , then Y (G) coincides
also with the set of the type@ of all rank one groups
J, (£ € 1), Thus for any « € Y (G) the torsion free
group GCu)/ G* () is completely decomposable and ho-
mogeneous of the type . 4 evidently, G («)/d*(«) €
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e . (1&a £2).The group G / G*™ (ux) is completel;
decomposable as well and the types of its direct summands
are % w ., Hence, if ()% a0 , then G/G*(w) is
v -reduced and in view of [4,Corollary 1] we have

"y, (G/G*(w)) = 0 .Thua in this case the conditions
(a),(b¥*) are fulfilled.

Now, let us suppose that G satisfies (a) and (b*);
we shall show that G is completely decomposable. From
the hypothesis it follows immediately that %(G) is fi-
nite. Let us put ¥(G) = f.og’< ... <wx, 3. Then we shall
prove the complete decomposability of G by induction on
m = ecand LC(G) .

For m =1 the group G is homogeneous of the type
72

4
a prime p implies s, (f2) % oo and in view of (b*)

and G*(u,) = 0. Then the inequality fG %G for

we have 0 = My (G /G*(up1 N= #, (G) . Hence, by [4,
Corollary 4], G is completely decomposable.

Thus, suppose m = 2 and let our assertion hold
whenever the cardinality of the corresponding type set is

we can apply our Lemma to G

m,_./f. Since G(“‘q) = G,

for . = 4ty and we get

(1) G =H+ 6*(w) ,

where the group H is completely decomposable. If we put
G*(.w,,) =G =G (w,) , then by (1) G, 1is alao al-
most divisible and %(G) = {wy, < ... < 4, 3 . We shall
now verify that G, fulfils (a) and (b*) for all types

of ¥(G4). In fact, if « € 1(41),then ry<ax, £
and hence G («) € G(u,) = G , which implies

\
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G, (w) = G (we) ; analogously, we obtain G*(n) &€

s G"‘(a,1) = :;'1 , therefore G* (w) = G} () .

Thus we have G:,(up)/qi*(w) = GCw) / G*(w) , which
means that G, fulfils (a) for each « € ’¥CG47 . By (1),

we can write for any « € 3(G1 )

(2) 6/G*ww)=(H+G)/ G*(w)=H+ G1/G"‘(w)=

‘ =H4+ G /G}rw) ;
thus for s (o) & 00 it is /oﬁ(G /G¥r)) =0 and
hence by (2)

m,,(H#- G,‘ /Gﬂ*(w)) = 0.

Following [4,Corollary 2], we get /(,”(Gq/ G;"(w)) =0,
therefore the condition (b*) is satisfied by G;, . Under
the inductive hypothesis G, and in view of (1) G is
completely decomposable as well. Thus the proof of our theo-
rem is finished.

If the group G ias torsion free of finite rank and H
any of its pure subgroups, then mﬂ(G)=Mﬁ(H)+/~Lﬁ‘CG/H)
for every prime 41 (see [6,Theorem 6]). In particular, we
obtain that «,, (G) = 0 implies /L”(G/H) = 0 for each
pure subgroup H of G . We shall use this last fact in
the proof of the following theorem. Let us recall that if
G is torsion free and 4v any prime, then G E»ﬂ"’] will
denote the greatest 4 -divisible subgroup of G . Evident-
1y, #p, (GLp®]) =x(G[n®]) (see [5,Theoren 1]).

Theorem 2. Let G be an almost divisible torsion free
group of finite rank with the linear]...y ordered type set
YL(G). Then G is completely decomposable if and only if
1y (G) = n (GLp*¥]) for every prime p .
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Proof. If.‘_G' is completely decomposable, then for any
prime 1 , G= GL[pn*] + G1 where G, is also com-
pletely decomposable and 41 -reduced. Then, by [4,Coro)la-
ry 1] %, (G ) = 0. Since nﬂ(G)-/zﬂ(GEp"J)Hgb(Cﬁ)
(see [6,Theorem 6]), we get mﬁ(G)cM,,(GE@"J):»LCG[{L“J).

To prove the converse conaider rrmCG')s x(GLn*l)

. for all primes v, For the proof of complete decompoaabi-«
lity of G it suffices to shaw that G  fulfila (b*) on-
1y, (a) being trivial. Let ¥(G)={a, <... <, ¥, take
w € ¥Y(G) and suppose ¢ (f2) % co for some prime f2.
In order to prove the relation /L’ﬂ'(G/G*(a,)) =0 we
shall distinguish two cases: GLn®] = 0 and GLa®I# 0.
If G(n*l=0,then n, (G) = x,(G[n®])=0 and in view
of the preceding remark we have xﬁ(G/G’* (w)) = 0. If
G[pn*®] s 0, then there exists an integer & m with
Ut"(ﬂ) = 00 j since w, € « and () %+ oo , it is
certainly 4 < j . Let < denote the smalleat integer
with &, (nn) = o0 ; we shall show that GLn®J= Glu,).
The relation u, (f2) = co implies the inclusion Glw;)E
€GIn®). But if D+ g eGLn™] anduy ~iynly),
then wy, (n) = o ,therefore 4 £ fe . Hence we conclude
w, & w, ad g & Gluy) .

Thus we have shown that G(n®J=G(«;) and alsoG(n¥]l=
= G""Cuiq) (2 & <). By [6,Theorem 6] we have

2p C6) = n, (GLp*) + KpCG/GLn®])
since nﬁcqu"l).-mce‘[p"])- %, CG) , we get

(3 O-L«CG/G'DW"J)-M“CG/G"‘(M.;‘_,')) .

- 28 -



From « (y2) 4 oo it follows 4 $€ 4., and hence
G*uw;_,) & G* () . Thus we have

6/GH ) & (G /G, ) /(G () / G* (s _ ")
and by (3) l&ﬂCG/G* () = 0 . This means that G ful-
fils (b*) and Theorem 2 is proved.

Remark. The preceding theorem may be likewise formula-

ted in the following way (see [2,Proposition 5.2]; for the
definition of the regularity of a group see also [2, § 5]):
Let G be an almost divisible torsion free group of finite
rank with the linearly ordered type set ¥ (G) . Then the
group G ia completely decomposable if and only if it is
regular.

Till now we have considered groups with the linearly
ordered type set Y(G&) only. In order to investigate the'
general case we shall use [1,Theorem 48.6]. Thus we get the
following assertion:

Theorem 3. An almost divisible torsion free group G
is completely decomposable if and only if the conditions
(a),{b) and

(c) G* () = G () G** ()
are fulfilled for each type « ¥ (G) .

Proof. Firstly, assume that G is completely decompo-
sable and that G =a¢24 J, is one of its complete decom-
positions. Denote by T (&) the set of all types of the
groups Jy (A 6 A) ; evidently, T(G) & X(G).For « €
e T(G) 1let A, denote the direct sum of all groups
J, of the type 4 cu:tn’inly..,,it iaGl)/G* ()2 A,.
If w(n)=k oo, then A, is a 4o -reduced completely

- 29 -



decomposable group and in view of [4,Corollary. 1] O =
-m&(A“)z-:mﬁCGam)/G*(w)) . Thus for w« € T(G)
the conditions (a) and (b) are fulfilled. But if e X(G)=
< T(G) ,then G(we) = G* () and the conditions (a),
(b) are trivial. The condition (c) follows from [1,Theoren
48.6]1.

Further, suppose that G fulfils the conditions (a),
(b),(c), and prove that G is completely decomposable. If
« € £(G) , then by Lemma there exists a direct decompo-
sition of the form G(«w) = G, + G*(w) where the
group Gm, is completely decomposable and homogeneous of
the type 4x . Now, the procof proceeds in the same way as
that of sufficiency in [1,Theorem 48.61. Thus, firstly, it
may be shown that the subgroups G, (« € ¥(G) ) gene-

rate their direct sum % Gw and then we should get

)
G= ‘% G«_ . The last relation is proved in [1,Theorem 48.6)
under the assumption that ¥(G ) satisfies the maximum
condition, but in our case Y (G) is finite, G being al-
most divisible. Since each G’“ is completely decomposab-
le, 8o is the group G = E Gw aa well, which finishes

the proof of the theorem.
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