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Commentationes Mathematicae Universitatis Carolinae 

12,1 (1971) 

CONCERNING ALMOST DIVISIBLE TORSION FREE ABELIAN GROUPS 

Ladislav PROCHAZKA, Praha 

A torsion free group G (all groups here are suppo­

sed to be abelian) will be called almost divisible if the 

set of all positive primes q, with AJ, G 4* G is finite. 

In this note we shall give some conditions that are neces­

sary and sufficient for an almost divisible group G to 

be completely decomposable. In the paper C2J of D.K. Har­

rison (see Proposition 5.2) such necessary and sufficient 

conditions are formulated for the groups of finite rank. 

But it was shown later (see [3]) that these conditions are 

not sufficient in general. However, the remark following 

Theorem 2 shows that the Harrison's conditions are suffi­

cient whenever the corresponding type set is linearly orde­

red . 

If & is a torsion free group, then %(.&) will de­

note the type set of all non zero elements in G $ G is 

said to be homogeneous of the type Atts if %(&) consists 

of one element A/O only. For a type AJC and a prime 41* the 

relation AH, (A% ) m co means that in any height belonging 

to AH, the jfv -height is oo f the symbols G (AH, ) , G*(AK) 

and (£** (AH/) represent the subgroups of G defined in 

AMS,Primary 20K20 Ref.2. 2.722.1 
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[1,§42]. The rank of a group G ia denoted by K ( G ) and 

K*»fG) stands for its Jjft -rank (see T5J). But in this 

note we shall use the relation ^(G) ** 0 only; this 

last relation says that for any finite set M £ G the 

tp, -primary component of the toraion group 4 W * / * M is 

reduced ( 4M}m denotes here the least pure subgroup of 

G containing M )• 

First of all we shall prove the following helpful as­

sertion. 

Lemma. Let G be an almost divisible torsion free 

group and let, for a type XJO e #CG) ;the following con­

ditions be fulfilled: 

(a) The group G (AX ) / G* (4*) ia torsion free and 

belongs to some Baer's class T^ j 

(b) for any prime jfi, the inequality AX,(ft,) 4* 00 im­

plies 

A^CG(4*)/G*(4*,)) ** 0 . 
i* 

Then the group G* (AX,) ia a direct aummand of G(AAC) -

G(4jt>)m G^ 4- G* (AJL) 9 whape G ^ ia completely decom­

posable and homogeneous of the type <<*> 9 or G ^ -» 0 • 

Proof. If G*(4#) mm G (AJL) 9 then G^'** 0 9 therefore 

we may suppose that G*Ctftv) + G (AH, ) . The group G (MC) 

as a pure subgroup of G ia likewise almost divisible 

and so ia the factor group ST m G (4ju) / G* (A*) as well. 

In view of (a), the group 3 ia toraion. free and the 

type of any of its non zero element a l& St 4JC . Thus, if jft, 

ia a prime with AA,(<fi) & 00 ,thea yftST m ?T.» Bat if 

AH, Cft) 4- 00 f then by (h) ^ ( S ) - 0 * 

In the last ease, each pure rank one subgroup of G ia 

- 24 -



of zero ̂ ,-rank (see £4,Corollary 2J), therefore each non 

zero element of 3* has a finite -ft -height in Sr (see 

16,Lemma 6.1]). Now we deduce from the finiteneas of the 

set of all primes *fv with AJC Cfu) ^ co that (? is homo­

geneous of the type AH . Thus the inequality ^ u 4> ? 

implies AH, (41) 4- CO and therefore H~ (&) m 0 . By (a), 

G belongs to some Baer's class 1^ and in view of 

£4,Corollary 43 & is completely decomposable. Evident­

ly, AH, is the type of any element y € G (AH ) -*- G*(4K,)f 

hence, according to the Baer's lemma £l,the note following 

Theorem 46.5 1 G * (AH) is a direct 8 u mm and in G (AH>) « 

Thus we have G(AH) « G^ 4- G*(AH,) , G^-S G<4*)/6*Cut) *&, 

therefore G^ is completely decomposable and homogeneous 

of the type AH> . 

Now we are in a position to prove a theorem concerning 

almost divisible groups with the linearly ordered type set 

(in natural order of the types) . 

Theorem 1. Let G be an almost divisible torsion free 

group with the linearly ordered type set %(G) > Then G 

is completely decomposable if and only if for any A* € 1f(G) 

the condition (a) together with the condition 

lb* ) / ^ ( 5 /GHub))m 0 whenever 4* (A*) + 00 

are fulfilled. 

Proof. If G ia completely decomposable and <S • I J. 

is a complete decomposition of S , then T&CG) coincides 

also with the set of the types of all rank one group* 

3^,(1 e 1) . 33*u8 for any AH, € %CG) the torsion free 

group G CAH) / &* (AHS) ia completely decomposable and ho­

mogeneous of the tyoe AX, J evidently, G CAM.) / G*(AH,) e 
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€ £ (A <E <o £ 2).The group G / G* (AH,) is completely 

decomposable as well and the types of its direct summands 

are 4t AH, . Hence, if AH, (<p<) *¥ oo 9 then G / G* (AH,) is 

A% -reduced and in view of £4»Corollary lj we have 

h, (G /G*(*&>)) m 0 . Thus in this case the conditions 
i* 

(a),(b*) are fulfilled. 

Now, let us suppose that G satisfies (a) and (b*); 

we shall show that G is completely decomposable. From 

the hypothesis it follows immediately that %(G) is fi­

nite. Let us put % (G) m {AK>M <:,.,-«- A/CM % . Then we shall 
•7 nu 

prove the complete decomposability of G by induction on 

tru s» cxwcL %(G) . 

For m, sa 1 the group G is homogeneous of the type 

AH, and G*(AH,A) ** 0 . Then the inequality /fx< G d£ G for 

a prime jfi implies 4H/.(^v) 4- 00 and in view of (b**) 

we have 0 * H^(G / G* (AJUA ))** M,^(G) . Hence, by [4, 
-ft- "J 4% r u t 

Corollary 4J, (J is completely decomposable. 

Thus, suppose m, i= 2 and let our assertion hold 

whenever the cardinality of the corresponding type set is 

m, - A . Since G (AH,* ) » S , we can apply our Lemma to G 

for AH, m AH, and we get 
(1). ( S s H t G * ^ ) , 

where the group H is completely decomposable. If we put 

G*(AJUJ m G, m G (*H,%) , then by (1) G^ is also al­

most divisible and %(ff) m {AH,^ <. ... < ^m,^ * Wt shall 

now verify that G^ fulfils (a) and (b*) for all types 

of ¥C0j ) . In fact,, if AX, € VC^), then it, •< it* * ̂ t 

and hence. G (AH,) &, G (*H,%) m G^ f which implies 
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G.(AJO) •» G (AH,) ; analogously> we obtain <£*(&) B 

S G*(tJt^) m SL . therefore G* (AX,) m, G*(itt>) * 

Thus we have (̂  (AH, ) / <^* Ĉfc,) * G(vo) / G^(AJC) , which 

means that G1 fulfils (a) for each AH, € % (G4 ) . By (1), 

we can write for any AJC € 7(G) 

(2) G /G*<4K,)m CH +G^ >/ <J*Cc*)£ H + <^/<5*0*)~ 

* H 4- <*, /G*(<*) >, 

thus for „</t,Cft) #» £o it is /^CG / G*f.-tfc )) m 0 and 

hence by (2) 

K^CH* G^ /G* (AJO)) m 0 . 

Following £4,Corollary 2], we get H,^ (G, / G* (AH/ )) ** 0 , 

therefore the condition (b*) is satisfied by G^ . Under 

the inductive hypothesis G* and in view of (1) G is 

completely decomposable as well. Thus the proof of our theo­

rem is finished. 

If the group G ia torsion free of finite rank and H 

any of its pure subgroups, then Jt^CG) » /c^VL) -f* K^(G/H ) 

for every prime -ft (see £6,Theorem 63). In particular, we 

obtain that H,^(G) ** 0 implies /t^CG/K ) «• 0 for each 

pure subgroup H of G . We shall use this last fact in 

the proof of the following theorem. Let us recall that if 

G is torsion free and <fi any prime, then G L<ftf° J will 

denote the greatest ^u -divisible subgroup of & m Evident­

ly* V CG I -ft-*]) a* KCGtji,*0} ) (see £5»Theorem 1J). 

Theorem 2. Let G be an almost divisible torsion free 

group of finite rank with the linearly ordered type set 

% C G ) , Then G is completely decomposable if and only if 

>%CG) » n, (Gtjfi^l) for every prime t̂ . 
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Proof. If G is completely decomposable, then for any 

prime /p, , G m G tfv**l 4- (af. where G^ ia alao com­

pletely decomposable and ft -reduced. Then, by C4,Corolla* 

ry 13 ^CGn) m 0 . Since K^ C G> - K^CG tft**l) +%,(% > 

(see C6,Theorem 6J), we get K^(d)m H^(Gtft**l)mKCGtf^l). 

To prove the converse consider K^CG ) » K CG tfu**l ) 

for all primes 4(t , For the proof of complete decomposabi-

lity of G it suffices to show that G fulfila (b* ) on­

ly, (a) being trivial. Let %(G)m KAK* < ... < .4*^1, take 

4K m V ( G ) and suppose 4K (ft) 4* oo for some prime fz . 

In order to prove the relation K^ (G / G* (AJC, )) ss 0 we 

shall distinguish two cases: Gtft*0! m 0 and G tft**l 4» 0. 

It Gtft*°l» 0, then n,^(G) m ^(Gtfi**!)** 0 and in view 

of the preceding remark we have K^CG/ G* (AX, )) m 0 . If 
7*' 

d tft**] 4* 0 , then there exists an integer ^ & at, with 

4*±(fi) m oo i since A& m\ 4K and AK (ft/ 4* oo , i t ia 

certainly 4 < $> . Let <£ denote tha amaHest integer 

with 4K^(ft) m co • we ahall show that Gtft°°lm G(AK^) . 

The relation 4K- (ft) m oo implies the inclusion G (AK* ) -= 

SGtfv**!. But i f 0 4* 9, e <J C-f*w] and^-riJ^ft^C^) , 

then vtyXft) -» 00 , therefore i i j t . Hence wa conclude 

4*1 m\ AK^ and g, m G (4K^ ) * 

Thua we have ahown that Gtft*°lm G(AK^) and also Gtft**l m 

m &mCt*£mi) CI m\ i ) . By C£,.Th*-areBL 6 ] we have 
*^CG)m K^CGtft**!)* K^CG/Gtft**!) • 

since K^CGtft*°l)*«*CGtft*0l)m H^CG) , we get 
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From 4K Cft,) 4» Do it follows JJU 4t ^ . . ^ •«-* hence 

6*0^1^^) s & * (<** J • Thu.a we have 

G/G*Qc) « (e/tf^Ca^^W/C^Cce)/^*^^)) 
and by (3) ^ C<? / G* (jJt* )) *» 0 • This means that (? ful­

fils (b* ) and Theorem 2 is proved. 

Remark. The preceding theorem may be likewise formula­

ted in the following way (see [2,Proposition 5.2J; for the 

definition of the regularity of a group see also [2, § 5J)s 

Let G be an almost divisible torsion free group of finite 

rank with the linearly ordered type set %(G) , Then the 

group G ia completely decomposable if and only if it is 

regular. 

Till now we have considered groups with the linearly 

ordered type set %(G) only. In order to investigate the 

general case we shall use [1,Theorem 48.6J. Thus we get the 

following assertion: 

Theorem 3. An almost divisible torsion free group G 

is completely decomposable if and only if the conditions 

(a),lb) and 

(c) a*C4fc.) - G(*JU) n G**(4*) 

are fulfilled for each type x* % (<Z ) . 

Proof. Firstly, assume that G ia completely decompo­

sable and that G .= S Jx ia one of its complete decom­

positions. Denote by T C 0 ) the aat of all types of the 

groups J^CA c A ) | avidaatly* T C G ) fi Z(G) . For 44, e 

e T(G) let A ^ denote tha direct sum of all groups 

J^ of tha typA AJt, $ cartaJjaly, it imGC4^y/G*(4»y&Am^. 

If 4M, (<p*) «fc 00 f then A/OV ia a >fi,-reduced completely 
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decomposable group and in view of £4,Corollary 13 0 » 

* K^(A4/c)**sop0(G(AJi,)/G*(4M,)) . Thus for AJC e T(G) 

the conditions (a) and (b) are fulfilled. But if AJC€ 7(G)-z> 

-&- T(G) ,then G(AJC) m G* (AM,) and the conditions (a), 

(b) are trivial. The condition (c) followa from LI,Theorem 

48.6J. 

Further, suppose that G fulfila the conditions (a), 

(b),(c), and prove that G is completely decomposable. If 

vc m % (G) , then by Lemma there exists a direct decompo­

sition of the form G(AJC) « GL 4- G* (AJC ) where the 

group G ^ is completely decomposable and homogeneous of 

the type AJC . Now, the proof proceeds in the same way as 

that of sufficiency in tl,Theorem 48.6J. Thus, firstly, it 

may be shown that the subgroups 0 ^ ( AJC e %(G) ) gene­

rate their direct sum 21 GL, « and then we should get 
4& AJC * ° 

G « 2 GL . The last relation is proved in £1,Theorem 48.6J 

under the assumption that %(G) satisfies the maximum 

condition, but in our case %(G) is finite, G being al­

most divisible. Since each G^% is completely decomposab­

le, so is the group G m ST GL- as well,, which finishes 
•PC ^^ 

the proof of the theorem. 
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