Commentationes Mathematicae Universitatis Carolinae

Marie Hájková
 The lattice of bi-numerations of arithmetic. I.

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 1, 81--104
Persistent URL: http://dml.cz/dmlcz/105331

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
12,1 \text { (1971) }
$$

THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC. I. Marie HAJKOVA, Praha

Introduction.

A sufficiently strong theory \mathcal{J} can be described in itself. This fact was first exploited by K. Gödel for proofs of his incompleteness theorems (the method of arithmetization of metamathematics). The notion "description" is explicated by the exact metamathematical notion bi-numeration (or strong representation). Suppose that a formula $\boldsymbol{\tau}$ (x) bi-numerates in \mathcal{J} the set T of axioms of \mathcal{J}. A formal statement Con expressing in a natural way the consistency of \mathcal{T} can be constructed simply by copying the metamathematical definitions involved. Starting from different bi-numerations of T we obtain different sentences
$\operatorname{con}_{\tau}$. The sentences $\operatorname{con}_{\tau_{1}}, \operatorname{con} \tau_{2}$ corresponding to two bi-numerations τ_{1}, τ_{2} may differ not only as expressions; they may have different strengths concerning the provability or unprovability of implications $\operatorname{Con}_{\tau_{2}} \rightarrow$ $\rightarrow \operatorname{con}_{\tau_{1}}$ and $\operatorname{Con}_{\tau_{1}} \rightarrow \operatorname{Con}_{\tau_{2}}$ in J. The Gödel's second incompleteness theorem is usually formulated as follows: if \mathfrak{T} is a sufficiently strong consistent theory
then $\operatorname{con} T_{T}$ is not provable in T (con T_{T} means

Con τ for a particular τ). Feferman [l] generalized this theorem in the following way: if \mathcal{J} is a sufficiently strong consistent theory and $\tau(x)$ is an REformula which bi-numerates the axioms of \mathcal{F} then $\operatorname{Con}_{\tau}$ is not provable in \mathcal{J}. On the other hand, Feferman shows in [1] that some limitation on $\tau(x)$ is necessary for sufficiently strong reflexive theories; for example, he constructs a bi-numeration $\pi^{*}(x)$ of the set of axioms of Peano's arithmetics \mathfrak{P}, for which $\operatorname{Con}_{\pi *}$ is provable in \mathscr{J}.

Let us consider for a moment the Peano's arithmetic \mathfrak{P} with the set of axioms \mathbf{P} from the intuitive set-theoretical point of view. (The Peano's arithmetic can be said to be the subject of our main interest.) For every bi-numeration $\pi(x)$ of the axioms P, the formula Con_{π} is true in the natural model of arithmetic (i.e. in the model of natural numbers). On the other hand, for each RE-binumeration $\pi(x)$ of P, the formula con_{π} is independent from \mathcal{P}. One could ask if it is possible to choose a particular bi-numeration so that the formula Con \boldsymbol{N}_{π} should most adequately express the consistency of Peano's arithmetic; then one could add the last formula to P. It would correspond to the aim of formulating axioms that describe the structure of natural numbers in a most faithful way.

In this paper, we restrict ourselves to the study of PR -bi-numerations and corresponding consistency statements. This restriction seems to be natural, because (1) every primitive recursive set (in particular, the set of
axioms of Peano s arithmetic) is bi-numerable by $P R$-formula, (2) every $P R$-farmula is an $R E$-formula and hence the $P R$-bi-numerations satisfy the Gödel's second incompleteness theorem, (3) PR -formulas are syntactically simplest and, say, most natural descriptions of primitive recursive sets. Cne of $P R$-bi-numerations of \mathbf{P} seems intuitively to be the most natural one. It results by formal copying the usual definition of \mathbf{P} as a list of finitely many formulas plus the induction schema. On the other hand, one can consider the structure $\left\langle\operatorname{Bin}_{\mathcal{\rho}}, \leq{ }_{\rho}\right\rangle$ where $\operatorname{Bin}_{\mathcal{P}}$ is the set of all $P R$-bi-numerations of P and $\alpha \leq \rho \beta$ means $\vdash_{\rho} \operatorname{con}_{\beta} \rightarrow \operatorname{con}_{\alpha}$. (We define \leq_{\propto} following Feferman). We hypothesize that no $P R$-bi-numeration is preferred from the point of view of this structure.

This hypothesis will be not fully confirmed in this paper. Nevertheless, we shall present several interesting properties of this structure, confirming more or less onr hypothesis. In the present first part, after collecting some preliminary results, we show that, for every theory \mathcal{A} which has in some sense similar properties as Peano's arithmetic, the ordering $\leqslant_{\mathcal{A}}$ is dense and is not linear (in fact, in every non-trivial interval there are many mutually incomparable elements). Further, we show that $\left\langle\operatorname{Bin}_{\mathcal{M}}\right.$, $\left.\leqslant_{\mathcal{M}}\right\rangle$ is a distributive lattice. In the second part [6] which will be a direct continuation of the first part, we shall study the problem of reducibility and the existence of relative complements. We also obtain a partial "non-describability" result, formulated in terms of a hierarchy for formulas of
the lattice theory which is similar to Lévy's hierarchy for set theory [4].

I am obliged to P. Vopěnka, who gave the first impuls to this work, and to my husband P. Hajek for the aid with the formulation and organization of results. I should like to thank them and 8190 to B. Balcar for many valuable discussions and comments.

I. Preliminaries

(a) Concerning the arithmetization of metamathematics.

This paper is very closely related to the work of Feferman Arithmetization of metamathematics in general setting [1]. We take as known the theory of primitive and gev neral recuraive functions and relations (see e.g. [3]). The reader of the present paper is supposed to be familiar with §§ $2-5$ and with a part of § 7 of [1]. The mentioned part of $\S 7$ will be reproduced in Sect.II. of this paper. We shall consequently use all definitions, theorems and conventions from [1].

In this Section some supplements to [1] needed later on will be given.

Let $F v(\varphi)=\left\{\mu_{0}, \ldots, \mu_{k}\right\}$ and let t_{0}, \ldots, t_{k} be terms. If there is no danger of misunderstanding, we shall write $\varphi\left(t_{0}, \ldots, t_{k}\right)$ instead of $\operatorname{ser}\binom{\mu_{0}, \ldots, \mu_{k}}{t_{0}, \ldots, t_{k}}$.

We shall add the following point (iv) to Lemma 3.5 [1]:
1.1. Lemma. (iv) Let ρ be formula of \mathcal{P}^{\prime}, let t_{0}, \ldots, t_{n} be terms of \mathcal{P} and let μ_{0}, \ldots, μ_{n} be variables. Then
$\vdash_{\mathcal{P}}\left(\operatorname{Sbl}_{\boldsymbol{b}}\binom{\mu_{0}, \ldots, \mu_{n}}{t_{0}, \ldots, t_{n}} \stackrel{(\mathcal{P})}{\leftrightarrow} \operatorname{Sb}\binom{\mu_{0}, \ldots, \mu_{n}}{t_{0}, \ldots, t_{n}} \varphi^{(P)}\right.$.
1.2. Definition. Let $\varphi \in F m_{k_{0}} \cdot \rho$ is said to be a $P R$-formula in $\mathcal{P} \quad(R E$-formula in $\mathcal{P})$ if there is a PR -formula ($R E$-formula) $\psi \quad$ such that $\vdash_{\mathcal{B}} \varphi \leftrightarrow \psi$.

We shall use Lemma 3.7 [1] in the following formulation:
1.3. Lemme. (i) If \varnothing is a $P R$-formula in \mathcal{P}, then $\sim \varphi$ is a $P R$-formula in \mathcal{P}.
(ii) If φ and ψ are $P R$-formulas in \mathcal{P}, then $\varphi \wedge \psi$ and $\varphi \vee \psi$ are PR -formulas in \mathcal{P}.
(iii) If \mathscr{P} is a $P R$-formula in \mathcal{P}, μ, wt variables and $u \neq w$, then $\hat{\mu}(\mu<w \rightarrow \varphi)$ and $\underset{\mu}{V}(\mu<w \wedge \varphi)$ are PR -formulas in \mathcal{P}.
(iv) If φ is a $P R$-formula in $\mathcal{P}, \mathcal{F}(\varphi)=$ $=\left\{\mu_{0}, \ldots, \mu_{k-1}\right\}$ and t_{0}, \ldots, t_{k-1} are terms of μ, then $\left(S b\binom{\mu_{0}, \ldots, \mu_{k-1}}{t_{0}, \ldots, t_{k-1}} \varphi\right)^{(K)}$ is a $P R$-formula in \mathcal{P}.
1.4. Definition. Let $\varphi \in F m_{k_{0}}$ and let $F v(\varphi)=$ $=\left\{v_{s_{0}}, \ldots, v_{x_{m}}\right\}$.Then

1.5. Lemma. Let $\varphi \in F m_{K_{0}}$ and let $F v(\varphi)=$
$=\left\{\mu_{0}, \ldots, \mu_{k-1}\right\}$. Then $\vdash_{\mu}{ }^{P} r_{x_{k_{0}}}\left({\hat{u_{0}}} \ldots \hat{\mu}_{k-1} \varphi \rightarrow \tilde{q}\right)$.
The lemma follows from the assertion in [1], p. 58, the first line from above (let us remark that $\vdash_{m} \Lambda_{v_{m}} \operatorname{Ton}_{k_{0}}\left(m m_{v_{m}}\right)$).

Theorem 5.4 [1] can be now reformulated as follows:
1.6. Theorem. Let $\varphi \in B P F$. Then $\vdash_{\mu} \varphi \rightarrow P r_{[Q]}(\tilde{\varphi})$.
1.7. Corollary. (i) Let $\varphi \in F m_{K_{0}}$ and suppose that there is $\psi \in B P F$ such that $F_{Q} \varphi \longleftrightarrow \psi$. Then $\vdash_{\mu} \varphi \rightarrow \mathrm{P}_{[\Omega]}(\tilde{\varphi})$.
(ii) Let φ be an $R E$-formula in $\mathcal{P}, \mathcal{F}(\rho)=$ $=\left\{\mu_{0}, \ldots, \mu_{k-1}\right\}$. Let $\mathcal{A}=\langle A, K\rangle$ be an axiomatic theory, $\mathfrak{P} \subseteq \mathcal{A}, \boldsymbol{\alpha} \in \mathrm{m}_{K_{0}}$ and let \propto bi-numerate \mathcal{A} in \mathcal{P}. Then

$$
\vdash_{\mu} \varphi \rightarrow P r_{\propto}(\tilde{\mathscr{P}})
$$

Proof. (i) We can suppose $\operatorname{Fv}(\varphi)=\operatorname{Fv}_{v}(\psi)=\left\{\mu_{0}, \ldots, \mu_{k-1}\right\}$. By 1.6, $\vdash_{\mu} \psi \rightarrow$ Pr $_{[Q J}(\tilde{\psi})$. From the assumption $\vdash_{Q} \varphi \leftrightarrow \psi$ we have $-_{v h} \mathrm{Pr}_{[Q]}\left(\overline{\hat{\mu}_{0} \cdots \hat{\mu}_{n-1}(\rho \leftrightarrow \psi}\right)$, and therefore $\vdash_{\mu} P_{0} r_{[Q]}\left(\tilde{\varphi}_{\sim}^{\sim} \sim \sim \sim \psi\right)$. Let us remark that $\vdash_{\mu} \varphi^{2} \leftrightarrows \tilde{\psi} \approx \tilde{\varphi} \longleftrightarrow \tilde{\psi}$. We obtain $\vdash_{\mu} P r_{[Q]}(\tilde{\varphi} \leftrightarrow \tilde{\psi}) \quad \vdash_{\mu} P^{r_{[Q]}}(\tilde{\varphi}) \leftrightarrow \operatorname{Pr}_{[Q]}(\tilde{\psi})$ and therefore $\vdash_{\mu} \varphi \rightarrow P_{\left[\kappa_{[Q]}\right.}(\tilde{\varphi})$.
(ii) From 3.9 [l] it follows that there is $\psi \in B P F$ such that $\operatorname{Fv}(\psi)=\left\{\mu_{0}, \ldots, \mu_{k-1}\right\}$ and $\vdash_{\mathcal{P}} \hat{\mu}_{0} \ldots$ $\ldots \wedge_{\mu_{k-1}}(\varphi \leftrightarrow \psi)$. By 4.4 [1], Pr f f_{\propto} bi-numerates Pr $f_{\mathcal{R}}$ in \mathcal{P} and therefore

$$
\vdash_{\mathcal{P}} P \mu_{o}\left(\overline{\mu_{0} \cdots \widehat{u n}_{\mu_{-1}}(\varphi \leftrightarrow \psi)}\right) .
$$

This implies \vdash_{β} P $_{\circ} \kappa_{\alpha}(\tilde{\varphi} \longleftrightarrow \sim \psi)$ by 2.5. Now we obtain

$$
\vdash_{\mathcal{A}} \varphi \rightarrow \mathrm{P} \mu_{\propto}(\tilde{\varphi}) .
$$

analogously as in (i).
1.8. Theorem. Let ρ be a $P R$-formula in \mathcal{P}, and suppose that $\mathcal{A}=\langle\mathcal{A}, \mathcal{K}\rangle$ is an axiom system, $\mathcal{P} \subseteq \mathcal{A}$, $\propto \in \mathcal{F} m_{K_{0}}$ and \propto bi-numerates A in \mathcal{P}.

Then

$$
\vdash_{\mu}\left(\operatorname{Co} n_{\alpha} \wedge P_{\mu_{\alpha}}(\tilde{\varphi})\right) \rightarrow \varphi .
$$

Proof. In μ, suppose $\operatorname{Con}_{\alpha}, P_{\mu_{\infty}}(\tilde{\varphi})$ and $\stackrel{\bullet}{\sim}$.

By Lemma 1.3, $\sim \boldsymbol{\rho}$ is a PR-formula in \mathcal{P}. We obtain $\mathrm{P}_{\kappa_{\propto}}(\approx \tilde{\rho})$ by Corollary 1.7. Let us remark that $\vdash_{\mu} \sim \tilde{\varphi} \approx \approx \tilde{\sim}$. We obtain $\operatorname{Pr}_{\alpha}(\sim \tilde{\varphi})$ and further $\sim \operatorname{con}_{\alpha}$, which is a contradiction in \mathcal{M}.
(b) Independent formulas

Feferman considers the formula ν_{c} (see Definition 5.2 in [1]). He proves, under certain assumptions, $\vdash_{\mathcal{A}} \nu_{\alpha}$ (cf. Theorem 5.3 [1]) and $\vdash_{\mathcal{A}} \operatorname{con} \boldsymbol{c o c}_{\alpha} \longleftrightarrow \nu_{\infty}$ (cf. Theorem 5:6[1]). In this paper, we shall also use the formula ρ_{α} defined following Rosser and the formula μ_{α} defined following Mostowski. In this Section we present some results of Rosser and Mostowski in a version modified for the purpose of this paper. In particular, we stress the fact that our Theorem 1.18 is proved in [5] in a far more general. formulation.
1.9. Lemma. (5.1 [1]). Let $\psi \in E m_{K_{0}}$ and let

Fv($\sim) \subseteq\{x\}$. Then there is a $\varphi \in \mathcal{F}_{m_{x_{0}}}$ such that $\vdash_{Q} \varphi \longleftrightarrow \psi(\bar{\varphi})$.
1.10. Definition. Let $\propto \in F m_{k_{0}}$ and let $F v(\alpha)=\{x\}$. Using Lemma 1.9 and Lemma 1.1 we define a formula $\rho_{\alpha} \in \mathrm{Fm}_{K_{0}}$ such that $\vdash_{\rho} \rho_{\alpha} \leftrightarrow \hat{y}\left[P_{\mu} f_{\alpha}\left(\bar{\rho}_{\alpha}, y\right) \rightarrow_{z<y} \mathcal{P}_{\beta \in} f_{\alpha}\left(\sim \bar{\rho}_{\alpha}, z\right)\right]^{(\mu)}$.
1.11. Remark. We have the following obvious fact

$$
\vdash_{\mathcal{P}} \rho_{\alpha} \leftrightarrow \hat{y}^{1}\left(P_{r} f_{\alpha}\left(\bar{\rho}_{\alpha}, y\right) \rightarrow V_{x y} \operatorname{Pr}_{r} f_{\alpha}\left(\overline{\sim \rho_{\alpha}}, x\right)\right)
$$

We shall write $\mathcal{R}_{\alpha}(y)$ instead of $P_{\mu} f_{\alpha}\left(\bar{\rho}_{\alpha}, y\right) \rightarrow$ $\rightarrow V_{x<y} P_{f} f_{\alpha}\left(\sim \rho_{\alpha}, x\right)$, so that we have $\mapsto_{\rho} \rho_{\alpha} \longleftrightarrow \hat{y}_{\alpha}(y)$. Further, let us mention that $R_{\alpha}(y)$ is a $P R$-formula in \mathcal{B}, whenever \propto is.
1.12. Denotation. For arbitrary formulas $\Phi_{i} \in \mathrm{Fm}_{k}$ ($i=0, \ldots, n-1, n>0$) we write $\prod_{i<n} \varphi_{i} \quad$ instead of $\varphi_{0} \wedge \ldots \wedge \varphi_{n-1}$. Similarly, $\underset{i \leqslant m}{X} \varphi_{i}$ is an abbreviatimon for $\varphi_{0} \vee \ldots \vee \varphi_{n-1}$.
1.13. Theorem. Let $\mathcal{A}=\langle\mathcal{A}, K\rangle$ be a consistent axiomatic theory. If $\mathcal{P} \subseteq \mathcal{A}, \propto \in \mathcal{F} m_{k_{0}}$ and if \propto binumerates A in \mathcal{P} then
(i) $\vdash_{\Omega} \rho_{\alpha}$,
(ii) $\vdash_{\mathcal{A}} \sim \rho_{\boldsymbol{\alpha}}$.

Proof. (i) Let $\vdash_{A} \rho_{\alpha}$ and let d be proof of ρ_{\propto} in \mathcal{A}. Then

$$
\vdash_{\mu} V_{x<a} \operatorname{Pr} f_{x}\left(\overline{\sim \rho_{\alpha}}, x\right)
$$

By Lemma $3.1[1]$, the last assertion is equivalent to the following one:

$$
\begin{equation*}
\vdash_{\mathcal{A}} \prod_{i<d} P_{\kappa} f_{\propto}\left(\overline{\sim \rho_{\alpha}}, \bar{i}\right) . \tag{1}
\end{equation*}
$$

Since \mathcal{A} is consistent and $\vdash_{\Omega} \rho_{\alpha}$ we have $H_{\mathcal{A}} \sim \rho_{x}$. Since \propto bi-numerates A in $\mathcal{P}, P_{r} f_{\alpha}$ bi-numerates
$P_{\kappa} f_{\mathcal{A}}$ in \mathcal{P} (by 4.4 [1]). It follows that $P_{\mu} f_{\propto}$ binumerates $\mathrm{Prf}_{\mathcal{A}}$ in \mathcal{A} since \mathcal{A} is a consistent externsion of \mathcal{P}. Consequently,

$$
\begin{equation*}
\vdash_{\Omega} \underset{i<\alpha}{\wedge} \sim P_{e} f_{\alpha}\left(\overline{\sim \rho_{\alpha}}, \bar{i}\right) . \tag{2}
\end{equation*}
$$

(1) and (2) give a contradiction in \mathcal{A}. We obtain $H_{\mathcal{A}} \rho_{\alpha}$.
(ii) Suppose $\vdash^{\prime} \sim \rho_{\alpha}$ and let d be a proof of $\sim \rho_{\alpha}$ in \mathcal{A}. Then

$$
\begin{equation*}
\vdash_{\Omega} Y_{y<\bar{d}} P_{\rho} r f_{\alpha}\left(\bar{\rho}_{\alpha}, y\right) \quad \text { i.e. } \tag{3}
\end{equation*}
$$

$$
\vdash_{\mathcal{A}} \bigcup_{i<d} P_{\rho} \in f_{\alpha}\left(\bar{\rho}_{\infty}, \bar{i}\right) .
$$

Analogously as in (i) we obtain
(4) together with (3) is a contradiction in \mathcal{A}. We have proved $H_{\mathcal{A}} \sim \rho_{\alpha}$.
1.14. Theorem. Let $\mathcal{A}=\langle A, K\rangle$ be an axiomatic theory such that $\mathcal{P} \subseteq \mathcal{A}$ and let α be a PR -formula in \mathcal{P} such that \propto bi-numerates \mathcal{A} in \mathcal{J}. Then
(i) $\vdash_{\beta} P_{\rho} \mu_{\alpha}\left(\bar{\sim} \rho_{\alpha}\right) \rightarrow \sim \operatorname{con} \alpha$,
(ii) - $_{\rho} \mathrm{Pr}_{\alpha}\left(\bar{\rho}_{\alpha}\right) \rightarrow \sim \operatorname{Con} \alpha$.

Proof. Evidently, it is sufficient to show
$(i) \quad \vdash_{\mu} P_{\mu_{\alpha}}\left(\overline{\sim \rho_{\alpha}}\right) \rightarrow \sim \operatorname{con}_{\alpha}$,
(ii)' $-\mu \mathrm{P} \mu_{\alpha}\left(\bar{\rho}_{\alpha}\right) \rightarrow \sim \operatorname{con}_{\propto}$.
(i)' We proceed in \mathcal{M}. Suppose $\mathrm{P}_{\boldsymbol{\mu}}{ }_{\propto}\left(\overline{\sim \rho_{\alpha}}\right)$, i.e. $\underset{x}{ } \operatorname{PPr}_{\alpha}\left(\approx \rho_{\alpha}, x\right)$. Further assume $\operatorname{con} \alpha$. By 1.7 we have $X_{x} \operatorname{Prf}_{\alpha}\left(\underset{P_{r} f_{\alpha}}{ }\left(\sim \rho_{\alpha}, x\right)\right)$.
Evidently $\vdash_{\mathcal{P}} \hat{x}\left[\sim \rho_{\alpha} \wedge P_{\mu} f_{\alpha}\left(\overline{\sim \rho_{\alpha}}, x\right) \rightarrow_{y<x} V_{p} P_{\alpha}\left(\bar{\rho}_{\alpha}, y\right)\right]$
 Hence our assumption $\mathrm{P}_{\rho} \mu_{\propto}\left(\overline{\sim \rho_{\propto \alpha}}\right)$ implies the following in \mathcal{M} (cf. Lemma 1.5):

$$
\vee P_{x} r f_{\alpha}\left(\overline{\sim \rho_{\alpha}}, x\right) \wedge P_{\mu_{\alpha}}\left(\widetilde{V}_{\gamma x} \tilde{P}_{\mu} f_{\alpha}\left(\widetilde{\rho_{\alpha}}, y\right)\right)
$$

Using Theorem 1.8 and the assumption $\operatorname{con} \alpha$ we obtain

$$
\underset{x}{V}\left[P_{0} \not f_{\propto}\left(\bar{\sim} \rho_{\propto}, x\right) \wedge \underset{y<x}{V} P \kappa f_{\propto}\left(\overline{\rho_{\propto}}, y\right)\right.
$$

and consequently $\sim \operatorname{Con}_{\alpha}$, which is a contradiction in \mathcal{K}.
The proof of (ii)' is analogous.
1.15. Remark. Since the implication

$$
\sim \cos _{\propto} \rightarrow\left(P_{\mu_{\alpha}}\left(\overline{\sim \rho_{\alpha}}\right) \wedge P_{\mu_{\propto}}\left(\overline{\rho_{\alpha}}\right)\right)
$$

is evidently provable in \mathcal{P}, we obtain in fact the following

$$
\vdash_{\rho} P_{\mu_{\alpha}}\left(\overline{\sim \rho_{\alpha}}\right) \longleftrightarrow \sim \operatorname{Con}_{\alpha}
$$

$\vdash_{\beta} \operatorname{Pr}_{\alpha}\left(\overline{\rho_{\alpha}}\right) \leftrightarrow \sim \operatorname{Con}_{\alpha}$.
1.16. Definition. Let $\propto \in \operatorname{Fm}_{\kappa_{0}}$, $\operatorname{Fv}(\alpha)=\{x\}$ and let $\Phi_{i} \in S t_{k}$ for $i=0, \ldots$, he. Using Lemma' 1.9 and Lemma 1.1 we define a formula $\mu_{\alpha} \in F m_{k_{0}}$ such that

$$
\begin{aligned}
\vdash_{p} \mu_{\alpha} & \leftrightarrow \hat{y}^{1}\left(W_{i<k+1} P_{\mu} f_{\infty}\left(\overline{\varphi_{i}} \longrightarrow \overline{u_{\alpha}}, y\right) \rightarrow\right. \\
& \left.\longrightarrow \bigvee_{x<y} W_{i<k+1}^{W} P_{\mu} f_{\infty}\left(\overline{\varphi_{i}} \longrightarrow \sim \bar{u}_{\alpha}, x\right)\right)^{(N)} .
\end{aligned}
$$

1.17. Remark. The formula μ_{∞} evidently depends on the choice of the formulas $\varphi_{0}, \ldots, \varphi_{k}$. Therefore we ought to write $\mu_{\alpha} \varphi_{0}, \ldots, \varphi_{k}$. But we shall omit the indices because there will be no danger of confusion. We have the following obvious fact:

$$
\begin{aligned}
& \vdash_{\mathcal{P}} \mu_{\alpha} \longleftrightarrow \hat{y}_{y}\left(W_{i<k+1} P_{\mu} f_{\infty}\left(\overline{\varphi_{i} \rightarrow \mu_{\alpha}}, y\right) \rightarrow\right. \\
& \left.\longrightarrow V_{z<y} \bigvee_{i<k+1} P_{x} f_{\infty}\left(\overline{\Phi_{i} \rightarrow \sim \mu_{\alpha}}, z\right)\right) .
\end{aligned}
$$

We shall write $M_{\alpha}(y)$ instead of
 so that we have $\vdash_{\mathcal{p}} \mu_{\alpha} \leftrightarrow \hat{y} M_{\alpha}(y)$
Further, let us mention that $M_{\infty}(y)$ as a $P R$-formula in $\mathcal{\beta}$ whenever α is.
1.18. Theorem. Let $\mathcal{A}=\langle A, X\rangle$ be an axiomatic theory such that $\mathcal{P} \subseteq \mathcal{A}$ and let α be an element of $\mathrm{Fm} \mathrm{K}_{0}$ which bi-numerates A in \mathcal{P}. Further, let $\varphi_{i} \in S t_{k}$ and let $\mathcal{A}_{i}=\mathcal{A}+\left\{\varphi_{i}\right\}$ be consiatent axiomatic theory for $i=0, \ldots$, he Let μ_{∞} be defined as in Definition 1.16. Then, for each $i=0, \ldots$, k,
(i) $\quad \vdash_{\mathcal{A}_{i}} \mu_{\alpha}$,
(ii) $H_{\mathcal{A}_{i}} \sim \mu_{\alpha}$.

Remark. Under the conditions of Theorem 1.18 we shall say that μ_{\propto} is defined with respect to the theories \mathcal{R}_{i} ($i=0, \ldots, k$) .

Proof. (i) Let be $\vdash_{\beta_{j}} \mu_{\alpha}$, i.e. $\vdash_{\mathcal{R}} \varphi_{j} \rightarrow \mu_{\alpha}$, for some $j(0 \leq j \leq k)$. Under this assumption there exis numbers n_{1} and η_{2} such that $r_{2} \leqslant k$, Pref $\left(\varphi_{r_{2}} \rightarrow\right.$ $\rightarrow\left(\mu_{\alpha}, \eta_{1}\right)$ and for arbitrary $i=0, \ldots, k$ and d it follows $d \geq \imath_{1}$, whenever $\operatorname{Pr} f_{\mathcal{A}}\left(\varphi_{i} \rightarrow \mu_{\alpha}, d\right)$: By 4.4. [1] Pr for bi-numerates $\operatorname{Prf}_{\mathcal{A}}$ in \mathcal{P} and, consequently, we have

$$
F_{\mathcal{P}} \operatorname{Prff}_{\rho}\left(\overline{\varphi_{r_{2}} \rightarrow \mu_{\alpha}}, \overline{n_{1}}\right) .
$$

Further, we have
$\vdash_{1_{1}} Y_{x<\hbar_{1}} W_{i<k+1} P_{t \in f_{\alpha}}\left(\overline{\varphi_{i} \rightarrow \sim \mu_{\alpha}}, z\right)$.
Using Lemma 3.1 [1], we have

Pref bi-numerates $P_{r} f_{\mathcal{A}}$ in $\mathcal{R}_{1_{2}}$, because $\mathcal{R}_{1_{2}}$ is a consistent extension of \mathcal{R}. Consequently, there exist numbbets r_{1} and r_{2} such that $r_{1}<\eta, r_{2} \leqslant k$ and $\operatorname{Prf}_{\mathcal{A}}\left(\varphi_{\kappa_{2}} \rightarrow \sim \mu_{\alpha} \kappa_{1}\right)$. Therefore we have

$\vdash_{\Omega_{n_{2}}} \underset{\substack{i<n_{1} \\ i<k+1}}{W} P_{p} f_{\propto}\left(\overline{\Phi_{i} \longrightarrow \mu_{\infty}}, I\right)$.
Using the same consideration as before, we can conclude that
there exist numbers s_{1}, s_{2} such that $0 \leq r_{1}<n_{1}<p_{1}$, $0 \leq D_{2} \leq k$ and $\operatorname{Br}_{\mu} f_{\mu}\left(\varphi_{D_{2}} \rightarrow u_{\alpha}, s_{1}\right)$. On the other hand, from the definition of η_{1}, we have that $\eta_{1} \leq$ $\leq B_{1}$. This is a contradiction and (i) is proved.
(ii) Let $\vdash_{\beta_{j}} \sim \mu_{\alpha}$, i.e. $\vdash_{\Omega} \varphi_{j} \rightarrow \sim \mu_{\alpha}$ for some $j(0 \leqslant j \leqslant k)$. Let d be a proof in \mathcal{A} of the implication $\varphi_{j} \rightarrow \sim \mu_{\alpha}$. If we set $\mu_{1}=$ $=d$ and $r_{2}=j$ we have $\operatorname{Prf}_{\mathcal{A}}\left(\rho_{r_{2}} \rightarrow \sim \mu_{x}, r_{1}\right)$. We can continue exactly as in the end of the proof of (i). The existence of numbers s_{1} and s_{2} such that $s_{2} \leq k$ and $\mathrm{Pr}_{\mathcal{R}}\left(\varphi_{1_{2}} \rightarrow \mu_{\alpha}, \nu_{1}\right)$ reduces case (ii) to case (i).
(c) Concerning the lattice theory

We take as known the fundamental definitions and thearems of the lattice theory (see e.g.[2]). In this section we only list the notions we shall use and remember two simple assertions that are closely related to the problems of this paper.

Let $K_{1}=\left\{r_{1,0}, r_{1,1}, f_{1,2}, f_{1,3}\right\}$. For arbitracy $\xi, \eta \in \mathrm{Tm}_{\kappa_{1}}$ we set $\xi \approx \eta=r_{1,0} \Gamma \xi, \eta \top$, $\left.\left.\left.\xi \leqslant \eta=\kappa_{1,1} \Gamma \xi, \eta\right\rceil, \xi \cap \eta=f_{1,2} \Gamma \xi, \eta\right\rceil, \xi \cup \eta=f_{1,3} \Gamma \xi, \eta\right\rceil$. We shall write $\xi<\eta$ as an abbreviation of the formula $\xi \leqslant \eta \wedge \sim(\xi \approx \eta)$.

Let S be set containing the following formulas:
$\hat{x}_{\hat{y}}(x \cap y \approx y \cap x) ; \hat{x}_{\hat{y}}(x \cup y \approx y \in x) ;$
$\hat{x} \hat{y} \hat{x}((x \cap y) \cap x \approx x \cap(y \cap x)) ; \hat{x} \hat{y} \hat{x}((x \cup y) \cup x \approx x \cup(y \cup x)) ;$
$\hat{x} \hat{y}(x \cap(x \cup y) \approx x) ; \hat{x} \hat{y}(x \cup(x \cap y) \approx x) ;$
$\hat{x} \hat{y}(x \leq y \longleftrightarrow x \cap y \approx x)$.

The set S_{d} contains in addition the following two formulas :
$\hat{x} \hat{y} \hat{x}(x \cap(y \cup x) \approx(x \cap y) \cup(x \cap x))$,
$\hat{x}_{\hat{y} \hat{z}}(x \cup(y \cap x) \approx(x \cup y) \cap(x \cup x))$.
The theory $\mathscr{S}=\left\langle S, K_{1}\right\rangle$ is called the lattice theory and the theory $\mathscr{S}_{\alpha}=\left\langle S_{\alpha}, K_{1}\right\rangle$ is called the distributive lattice theory. We shall use the Tarski's notions of satisfaction and model in the same way as Feferman does (cf.[l]).

A structure $\underline{M}=\langle M, G\rangle$ which is a model of $\mathscr{\mathscr { O }}=$ $=\left\langle S, K_{1}\right\rangle$ is called a lattice (similarly for distributive lattices). We write also $\langle M, \leq, \cap, U\rangle$ instead of $\langle M, G\rangle$, where \leq is $G(\leq), \cap$ is $G(\cap)$ and U is $G(u)$.

Suppose $\varphi \in F m_{\alpha_{1}}$; an ordered k-tuple $\left\langle a_{0}, \ldots\right.$ \ldots, a_{k-1} > of elements of M is said to satisfy φ in M (denotation: $\mathcal{M} \models \varphi\left[a_{0}, \ldots, a_{k-1}\right]$) if every assignment W such that $W\left(i_{n}\right)=a_{n}$ for $n=$ $=0, \ldots$, se -1 satisfies φ in \underline{M}, where Fv(φ) $=$ $=\left\{v_{i_{0}}, \ldots, v_{i_{k-1}}\right\}, i_{0}<\ldots<i_{k-1}$.

The notions of a sublattice and of an isomorphism have there usual meanings. If $\underline{M}=\langle M, G\rangle$ is a lattice and if $a, b \in M, a \leq b$, then we define the segment $\langle a ; b\rangle$ determined by a, b putting $\langle a ; b\rangle=$ $=\{\mu \in M ; a \leq \mu \leq b\}$.

Evidently, a segment $\langle a ; b\rangle$ determines a sublattice of \underline{M}. This lattice will be denoted also by $\langle a ; b\rangle$ if there will be no danger of confusion. If \underline{M} is distributive then $\langle a ; b\rangle$ is alsa distributive.
1.19. Theorem. ([2],p. 70). Let $M=\langle M, \leqslant, \cap, U\rangle$ be a distributive lattice and let a, b, c, d be elements of M such that $a<b, c \cap d=a \quad$ and $c \cup d=b$. Then the function $f(x)=d U x$ is an isomorphism of $\langle a ; c\rangle$ and $\langle d ; b\rangle$.
1.20. Theorem. Let \underline{M} and \underline{M} ' be lattices and let f be an isomorphism of \underline{M} and \underline{M}^{\prime}. Let $\varphi \in F m_{k_{1}}$, $F_{v}(\varphi)=\left\{v_{i_{0}}, \ldots, v_{i_{n-1}}\right\}$ and let $\left\langle a_{0}, \ldots, a_{n-1}\right\}$ be an n-tuple of elements of M. Then $\underline{M} \vDash \varphi\left[a_{0}, \ldots, a_{n-1}\right]$ if and only if
$\underline{M}^{\prime} \vDash \varphi\left[f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right]$.
This holds for arbitrary relational structures. The proof is done by induction on formulas.
II. The lattice of bi-numerations of arithmetic
2.1. Assumptions. In this section, $\mathcal{A}=\langle A, K\rangle$ denotes an arbitrary fixed axiomatic theory such that
(1) A is primitive recursive,
(2) \mathcal{A} is consistent,
(3) $\mathcal{P} \subseteq \mathcal{A}$.

Evidently, the set P of axioms of Peano arithmetic \mathfrak{P} is primitive recursive and consequently $\mathcal{A}=\mathfrak{P}$ satisfies the assumptions (1) and (3).

We restrict ourselves to the study of $P R$-bi-numerations of. A (cf. the Introduction). We recall Theorem 3.11 [1] from which follows that a set is primitive recursive if and only if it is bi-numerable in Q by $P R$-formula. Moreover it follows that it is immaterial whether we speak of $P R$-bi-numerations in Q or in a consistent extension
\mathcal{B} of Q. Hence we can simply speak of $P R$-bi-numerations.
2.2. Definition. Bin is the set of all $P R$-formulas in \mathcal{P} bi-numerating A.

Evidently Bin is non-empty.
2.3. Definition (7.1 [1]). Let $\mathcal{B}=\langle B, K\rangle, K_{0} \subseteq K$ and suppose that $\alpha, \alpha^{\prime} \in F m_{K_{0}}, F v(\alpha)=F v\left(\alpha^{\prime}\right)=\{x\}$. We put
(i)
(iii) $\propto=_{\mathcal{\beta}} \propto$, if simultaneously $\propto \leq_{\mathcal{B}} \propto^{\prime}$ and $\propto^{\prime} \leq_{\mathcal{B}} \propto$.
2.4. Definition. Bin $=\left\langle\operatorname{Bin}, \leq_{\mathcal{A}},=_{\mathcal{A}}\right\rangle$; i.e. Bin is the structure with the field Bin and two binary relations $=_{\mathcal{A}}$ and $\leqslant_{\mathcal{A}}$.

Obviously, Bin is a (partially) ordered set with non-absolute equality. An ordered set in the usual sense results by factorisation:
2.5. Definition. Let $\propto \in \operatorname{Bin}$. We denote by $[\propto]$ the set of all $\beta \in \operatorname{Bin}$ such that $\alpha=_{\Omega} \beta$.

Let $\alpha, \beta \in \operatorname{Bin}$. We put $[\alpha] \leq{ }_{\Omega}[\beta]$ if $\alpha \leqslant_{\mathcal{A}} \beta$. (This denotation cannot cause any confusion.)
[Bin] is a set of all $[\propto]$ where $\propto \in \operatorname{Bin}$,
$[$ Bin $]=\langle[\operatorname{Bin}], \leqslant \boldsymbol{A}\rangle$.
[Bin] is a (partially) ordered set. We shall freely use both the Bin symbolism and the [Bin] symbolism, because they are closely related, as it is well known.

Feferman proved that Bin has neither minimal nor - a maximal element:
2.6. Theorem (7.4 [1]). Suppose thet \mathcal{A} is reflexive. Then for every $\alpha \in \operatorname{Bin}$ there is an α ' $\in \operatorname{Bin}$ such that

$$
\propto^{\prime}<\boldsymbol{\Omega} \propto .
$$

2.7. Corollary. If \mathcal{A} is reflexive then [Bin] is infinite.
2.8. Theorem (7.5 [1]). Suppose that \mathcal{A} is ω-consistent. Then for every $\alpha \in \operatorname{Bin}$ there is α ' $e \operatorname{Bin}$ such that

$$
\propto<_{\mathcal{A}} \alpha^{\prime}
$$

2.9. Corollary. If \mathcal{A} is ω-consistent then [Bin] is infinite.

Considering the proofs of Theorems 2.6 and 2.8 one could conjecture that $\alpha \leq_{\mathcal{A}} \alpha^{\prime}$ if and only if $\vdash_{\mathcal{A}} \hat{x}(\alpha(x) \rightarrow$ $\left.\rightarrow \alpha^{\prime}(x)\right)$. If $\vdash_{\mathcal{A}} \hat{x}_{\hat{x}}\left(\alpha(x) \rightarrow \alpha^{\prime}(x)\right)$ then really $\propto \leqslant_{\mathcal{A}} \alpha^{\prime}$. But we show in the following example that the converse is not true. In fact, we define formulas $\alpha^{\prime}, \alpha^{\prime \prime} \epsilon$ \in Bin such that

$$
\propto^{\prime \prime}<_{\mathcal{A}} \alpha^{\prime}
$$

$H_{\mu}\left(\hat{\alpha} \alpha^{\prime \prime}(x) \rightarrow^{\prime}(x)\right)$.
2.10. Example. Suppose that \mathcal{A} is a-consistent and let α, α, be elements of Bin such that $\propto<_{\mathcal{A}} \alpha^{\prime}$ and $\vdash_{\mathcal{A}} \hat{\boldsymbol{\alpha}}\left(\alpha(x) \rightarrow \alpha^{\prime}(x)\right) \quad$ (the existence is guaranteed by the proof of $7.5[1])$. Put $B_{1}=\mathcal{A}+\left\{C_{o n},\right\}$, $\mathcal{B}_{2}=\mathcal{A}+\left\{\sim \operatorname{Con}_{\alpha}, A \operatorname{Con} \alpha_{\alpha}\right\}$. Both \mathcal{B}_{1} and \mathcal{B}_{2} are consistent. Let μ_{∞} be defined with respect to \mathcal{B}_{1} and \mathcal{B}_{2} (cf. 1.18). Further, put $\alpha^{n}(x)=\alpha(x) \vee_{y<x}^{V} \sim M_{\alpha}(y) \wedge\left(x \approx \rho_{\alpha} \text {, } \wedge \text { ช } \varepsilon_{y} \approx \psi \varepsilon_{y}\right)^{(\mu)}$.

Evidently $\alpha " \in \operatorname{Bin}$. Since $\vdash_{\mathcal{A}} \operatorname{Con}{ }_{\alpha}, \longrightarrow$
$\rightarrow \sim P \mu_{\alpha}\left(\overline{\sim \rho_{\alpha}},\right)$ and $\vdash_{\mathcal{R}} \hat{x}\left(P r_{\alpha}(x) \rightarrow P r_{\alpha},(x)\right)$,
we have $\vdash_{\mathcal{A}} \operatorname{Con}_{\infty}, \longrightarrow \sim P r_{\alpha}\left(\overline{\rho_{\alpha}}\right)$, which implies
$\vdash_{\mathcal{A}} \operatorname{Con} n_{\alpha}, \rightarrow \operatorname{con}_{\alpha \prime}$. On the other hand, $\vdash_{\rho}\left(\operatorname{Con} n_{\alpha} \wedge\right.$ $\wedge\left(\mu_{\alpha}\right) \rightarrow \operatorname{con}_{\alpha}$, and $H_{A}\left(\sim \operatorname{Con} n_{\alpha}, \wedge \operatorname{Con} n_{\alpha}\right) \rightarrow \sim \mu_{\alpha}$ and consequently $H_{\mathcal{A}}$ Con $n_{\alpha "} \rightarrow \operatorname{Con}_{\alpha}$, We have proved $\propto "<_{\Omega} \alpha^{\prime}$. Further, we have

$$
\vdash_{\Omega}\left(\operatorname{con}{ }_{\alpha}, \wedge \sim \mu_{\alpha}\right) \rightarrow\left(\sim P_{\mu_{\alpha}},\left(\overline{\rho_{\alpha}}\right) \wedge P r_{\alpha "}\left(\overline{\rho_{\alpha}},\right)\right) .
$$

Since $\operatorname{to}_{\mathcal{A}} \operatorname{cọn}_{\alpha}, \rightarrow \mu_{\alpha}$ we have $H_{\mathcal{A}} \operatorname{Pr}_{\infty},\left(\bar{\rho}_{\alpha}\right.$, \rightarrow
$\rightarrow P r_{\alpha},\left(\overline{\rho_{\alpha}}\right)$, which implies $H_{\mathcal{A}} \hat{x}\left(\alpha^{\prime \prime}(x) \rightarrow \alpha^{\prime}(x)\right)$.
On the other hand, we have the following:
2.11. Theorem. For each $\alpha, \beta \in \operatorname{Bin}, \alpha \leq \Omega \beta$ if and only if there is a $\beta^{\prime} \in \operatorname{Bin}$ such that
(1) $\beta=\mathcal{A} \beta^{\prime}$,
(2) $\vdash_{\Omega} \hat{x}\left(\alpha(x) \rightarrow \beta^{\prime}(x)\right)$.

Proof. Let $\alpha, \beta \in \operatorname{Bin}$ and suppose $\alpha \leq \boldsymbol{\beta} \beta$. It is sufficient to set
$\beta^{\prime}(x)=\alpha(x) \vee \operatorname{Fim}_{k}^{(\mathcal{K})}(x) \wedge_{y<x} \vee_{k} f_{\beta}(\overline{0 \approx 1}, y)$.
The converse is trivial.
Let us ask if the set Bin is ordered by \leqslant_{Ω} densely. The positive answer is given by the following:
2.12. Theorem. For each $\alpha_{1}, \alpha_{2} \in \operatorname{Bin}$ if $\alpha_{1}<\Omega \alpha_{2}$ then there is an $\propto \in \operatorname{Bin}$ such that $\alpha_{1}<_{\Omega} \propto<_{\Omega} \alpha_{2}$.

Proof. Let $B=\mathcal{A}+\left\{\sim \operatorname{Con}_{\alpha_{2}} \wedge \operatorname{Con}_{\alpha_{1}}\right\}$ and put $\beta(x)=\alpha(x) \vee x \approx \sim \operatorname{con}_{\alpha_{2} \wedge \operatorname{con}_{\alpha_{1}}}$. Evidentiy, β is a $P R$-formula in \mathcal{P} and bi-numerates the set $\beta=$ $=A \cup\left\{\sim \operatorname{Con}_{\alpha_{2}} \wedge \operatorname{Con}_{\alpha_{1}}\right\}$. The assumption $\alpha_{1}<\Omega \alpha_{2}$ implies that $\beta=\langle B, K\rangle$ is consistent. Let ρ_{B} be d P隹ined by 1.10. We have
(1) $H_{\beta}\left(\sim \operatorname{Con}_{\alpha_{2}} \wedge \operatorname{Con}_{\alpha_{1}}\right) \rightarrow \rho_{\beta}$,
(2) $H_{\mu}\left(\sim \operatorname{Con}_{\alpha_{2}} \wedge \operatorname{Con}_{\alpha_{1}}\right) \rightarrow \sim \rho_{\beta}$.

Put $\alpha(x)=\alpha_{1}(x) \vee \operatorname{Em}_{k}^{(\mu)}(x) \wedge_{y_{1}, v_{2}<x} \sim R_{\beta}\left(y_{1}\right) \wedge P_{1} f_{\alpha_{2}}\left(\overline{0 \approx 1}, y_{2}\right)$. Evidently, $\alpha \in \operatorname{Bin}$ and $\alpha_{1} \leqslant_{\Omega} \alpha \leqslant_{\mathcal{R}} \alpha_{2}$. Further, by the definition of \propto,
(3) $\vdash_{\beta}\left(\sim \operatorname{Con}_{\alpha_{2}} \wedge \sim \rho_{\beta}\right) \rightarrow \sim \operatorname{Con}_{\alpha}$,
(4) $\vdash_{\rho}\left(\operatorname{Con}_{\alpha_{1}} \wedge \rho_{\beta}\right) \rightarrow \operatorname{Con}_{\alpha}$.
(3) and (1) imply $H_{\beta} \operatorname{Con}_{\alpha} \rightarrow \operatorname{Con}_{\alpha_{2}}$, i.e. $\alpha_{2} \not{ }_{\mathcal{A}} \propto$,
(4) and (2) imply $H_{\mathcal{R}} \operatorname{Con}_{\alpha_{1}} \rightarrow \operatorname{Con}_{\alpha}$, i.e. $\propto ⿻_{\mathcal{1}} \alpha_{1}$.

It is well known that every countable, linearly and densely ordered set M without maximal and minimal lements is homogeneous (i.e. for each $x, y \in M$ there is an automorphism of M which maps x to y). If [Bin] were linearly ordered, the problem of "indescribability" (assuming reflexivity and ω-consistency of \mathcal{A}) would be completely settled. But in [Bin] there are incomparable elements.
2.13. Definition. Let $\alpha, \beta \in \operatorname{Bin}$. We put $\alpha \|_{\mathcal{R}} \beta$
 $\beta \not \boldsymbol{\neq}_{\Omega} \propto$.
2.14. Theorem. Let Ω be reflexive and ω-consistent. Then for each $\alpha \in \operatorname{Bin}$ there is an $\alpha^{\prime} \in \operatorname{Bin}$ such that $\propto \|_{\boldsymbol{N}} \boldsymbol{\alpha}^{\prime}$.

Proof. By 2.6, there is an $\alpha_{1} \in \operatorname{Bin}$ such that $\alpha_{1}<\Omega$ $<_{\mathcal{A}} \propto$. Put $B_{1}=\Omega+\left\{\operatorname{con}_{\alpha}\right\}$ and $\beta_{2}=A+\left\{\sim \operatorname{Con} n_{a} \wedge \operatorname{Con}_{\alpha_{1}}\right\}$. Both β_{1} and \mathcal{B}_{2} are consistent. Let μ_{α} be defined with
respect to β_{1} and β_{2}. Put

$$
\alpha^{\prime}(x)=\alpha_{1}(x) \vee F_{1} m_{k}^{(\mu)}(x) \wedge \underset{y<x}{\vee} \sim M_{\alpha}(y) .
$$

Evidently $\alpha^{\prime} \in \operatorname{Bin}$. We shall prove α ' $\|_{\mathcal{R}} \propto$. Since $\vdash_{\rho}\left(\mu_{\alpha} \wedge \operatorname{Con}_{\alpha_{1}}\right) \rightarrow \operatorname{Con}_{\alpha c}$, and $H_{\mathcal{R}}\left(\sim \operatorname{Con} n_{\alpha} \wedge \operatorname{Con}_{\alpha_{1}}\right) \rightarrow \sim \mu_{\alpha}$, we have $H_{\mathcal{A}} \operatorname{con}_{\alpha}, \rightarrow \operatorname{Con}_{\alpha}$, i.e. $\propto ⿻_{\mathcal{A}} \alpha^{\prime}$. Since $\vdash_{\beta} \sim \mu_{\alpha} \rightarrow \sim \operatorname{Con}_{\alpha}$, and $H_{\mathcal{A}} \operatorname{con} n_{\alpha} \rightarrow \mu_{\alpha}$, we have $H_{\beta} \operatorname{con} \alpha_{\alpha} \rightarrow \operatorname{Con}_{\alpha}$, i.e. $\propto^{\prime} \leqslant_{\beta} \propto$.

The following theorem is a simultaneous generalization of 2.12 and 2.14:
2.15. Theorem. Let $n \in \omega, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Bin}, \alpha_{1}, \alpha_{2} \in \operatorname{Bin}$ and $\alpha_{1}<_{\mathcal{A}} \alpha_{2}$. Suppose $\beta_{i} \xi_{\mathcal{A}} \alpha_{1}$ and $\beta_{i} \not \mathcal{A}_{\mathcal{A}} \alpha_{2}$ for $i=$ $=1, \ldots, m$. Then there is an $\alpha \in \operatorname{Bin}$ such that
(1) $\alpha_{1}<\mathcal{A} \propto<_{\mathcal{A}} \alpha_{2}$ and
(2) $\beta_{i} \|_{\mathcal{A}} \propto$ for each $i=1, \ldots, n$.

Proof. Let $D_{i}=\mathcal{A}+\left\{\operatorname{Con}_{\alpha_{1}} \wedge \sim \operatorname{Con}_{\beta_{i}}\right\}(i=1, \ldots, n)$, $\left.D_{n+i}=\mathcal{A}+\operatorname{Con}_{\beta_{i}} \wedge \sim \operatorname{Con}_{\alpha_{2}}\right\}(i=1, \ldots, n)$ and $D_{2 n+1}=$ $=\mathcal{A}+\left\{\sim \operatorname{Con}_{\alpha_{2}} \wedge \operatorname{Cos}_{\alpha_{1}}\right\}$. Evidently, each $D_{j}(j=1, \ldots$ $\ldots, 2 n+1$) is consistent. Define $\mu_{\alpha_{1}}$ with respect to the theories $D_{j}(j=1, \ldots, 2 m+1)$. We have
(1) $H_{A}\left(\operatorname{con}_{\alpha_{1}} \wedge \sim \operatorname{Con}_{\beta_{f}}\right) \rightarrow \sim \mu_{\alpha_{1}}(i=1, \ldots, n)$,
(2) $H_{A}\left(\operatorname{Con}_{\beta_{i}} \wedge \sim \operatorname{Con}_{\alpha_{2}}\right) \rightarrow \mu_{\alpha_{1}}(i=1, \ldots, n)$,
(3) $H_{k}\left(\sim \operatorname{con}_{\alpha_{2}} \wedge \operatorname{Con}_{\alpha_{1}}\right) \rightarrow \sim \mu_{\alpha_{1}}$,
(4) $H_{\Omega}\left(\sim \operatorname{con}_{\alpha_{2}} \wedge \operatorname{con}_{\alpha_{1}}\right) \rightarrow \mu_{\alpha_{1}}$.

Put
$\propto(x)=\alpha_{1}(x) \vee F_{P} m_{k}^{(\mu)}(x) \wedge_{y_{1}, y_{2}<x} \mathcal{V}^{\left(\sim M_{\alpha_{1}}\left(y_{1}\right) \wedge P_{k} f_{\alpha_{2}}\left(\overline{0 x 1}, y_{2}\right)\right) . ~}$
Evidently, $\alpha \in \operatorname{Bin}$ and $\alpha_{1} \leq \Omega \propto \leqslant_{\Omega} \alpha_{2}$. We have
(5) $\vdash_{p}\left(\operatorname{con} \alpha_{\alpha_{1}} \wedge \mu_{\alpha_{1}}\right) \rightarrow \operatorname{Cop}_{\alpha}$,
(6) $\vdash_{\mathcal{B}}\left(\sim \operatorname{Con}_{\alpha_{2}} \wedge \sim \mu_{\alpha_{1}}\right) \rightarrow \sim \operatorname{Con}_{\alpha}$.
(1) and (5) give $H_{\Omega} \operatorname{Con} n_{\alpha} \rightarrow \operatorname{Con}_{\beta_{i}}$, i.e. β_{i} \& $_{\Omega} \propto$,
for each $i=1, \ldots, m$. (2) and (6) give
$H_{A} \operatorname{Con}_{\beta_{i}} \rightarrow \operatorname{con}_{\alpha}$, i.e. $\propto \not \leqslant_{\mathcal{A}} \beta_{i}$, for each $i=1, \ldots, n$. The inequalities $\alpha_{1}<_{\mathcal{A}} \propto<_{\mathcal{R}} \propto_{2}$ can be proved using (3) and (4) as in the proof of 2.12.
2.16. Corollary. Let \mathcal{A} be reflexive and ω-consistent. Then for each $n \in \omega$ and arbitrary β_{1}, \ldots $\ldots, \beta_{n} \in \operatorname{Bin}$ there is an $\alpha \in \operatorname{Bin}$ such that
$\propto \|_{\mathcal{A}} \beta_{i}$ for each $i=1, \ldots, n$.
Proof. Put
$\alpha_{1}^{\prime}(x)=\beta_{1}(x) \wedge \ldots \wedge \beta_{n}(x)$,
$\alpha_{2}^{\prime}(x)=\beta_{1}(x) \vee \ldots \vee \beta_{n}(x)$.

Evidently, $\alpha_{1}^{\prime}, \alpha_{2}^{\prime} \in \operatorname{Bin}$ and $\alpha_{1}^{\prime} \leqslant_{\mathcal{A}} \beta_{i} \leq \mathcal{K _ { \mathcal { L } }} \alpha_{2}^{\prime}$ for each $i=1, \ldots, m$. Choose an $\alpha_{1}<_{\mathcal{M}} \alpha_{1}^{\prime}$ (it exists by 2.6) and an $\alpha_{2}>_{\mathcal{A}} \alpha_{2}^{\prime}$ (it exists by 2.8). Theorem 2.15 gives the result.
2.17. Corollary. Under conditions of Corollary 2.16, each $\beta \in \operatorname{Bin}$ belongs to some infinite set of mutually incomparable elements.

Proof. We put $\beta_{1}=\beta$. If $\beta_{1}, \ldots, \beta_{n}$ are defined, we define β_{n+1} in the same way as α was defined in the preceding corollary.

In the proof of 2.16 we used the fact that in Bin every n-tuple of elements has upper and lower boundaries. Now we ask whether suprema and infima exist. Theorems 2.19 and 2.21 answer this question affirmatively. One could hypothesize that, given $\alpha_{1}, \alpha_{2} \in \operatorname{Bin}, \alpha_{1} \vee \alpha_{2}$ is the supremum and $\alpha_{1} \wedge \alpha_{2}$ is the infimum. The next example shows that the hypothesis is false. We construct
$\alpha_{1}, \alpha_{2} \in \operatorname{Bin} \quad$ such that $\alpha_{1}=\alpha_{\Omega} \alpha_{2}$ but
$H_{\Omega} \operatorname{Con}_{\alpha_{1}} \rightarrow \operatorname{CoO}_{\alpha_{1} \vee \alpha_{2}}$. In other words,
$\alpha_{1} \vee \alpha_{2}>_{\mathcal{A}} \alpha_{1}=_{\mathcal{A}} \alpha_{2}=\alpha_{\mathcal{R}} \sup \left(\alpha_{1}, \alpha_{2}\right)$.
2.18. Example. Let \mathcal{A} be ω-consistent and suppose $\alpha \in \operatorname{Bin}$. Let $B=A \cup\left\{\operatorname{con}_{\alpha}\right\}$ and let $\beta(x)=\alpha(x) \vee$ $v x \approx \overline{C_{0} n_{\alpha}}$. Evidently, $B=\langle B, K\rangle$ is consistent and $\beta(x)$ is a $P R$-formula in \mathcal{P} bi-numerating B.
Put
$\alpha_{1}(x)=\alpha(x) \vee \vee_{y<x}\left[\sim R_{\beta}(y) \wedge\left(x \approx \overline{\sim \rho_{\alpha}} \dot{\sim} v_{\cdot} r_{y} \approx \sim_{i} r_{y}\right)^{(\mu)}\right]$,
$\alpha_{2}(x)=\alpha(x) \vee_{y<x}^{\vee}\left[\sim R_{\beta}(y) \wedge\left(x \approx \overline{\rho_{x}} \wedge v_{0} \varepsilon_{y} \approx v_{0} \varepsilon_{y}\right)^{(\mu)}\right]$.
Evidently, $\alpha_{1}, \alpha_{2} \in \operatorname{Bin}$. We have $\vdash_{\mathcal{A}} \operatorname{Con}_{\alpha} \leftrightarrow \sim P_{\mu_{\alpha}}\left(\bar{\rho}_{\alpha}\right)$
and $\vdash_{\Omega} \operatorname{Con}_{\propto} \leftrightarrow \sim \operatorname{Pr}_{\alpha}\left(\overline{\sim \rho_{\alpha}}\right)$. Hence $\propto=_{\Omega} \alpha_{1}=_{\mathcal{R}}$
$=_{\Omega} \alpha_{2}$. Since $\vdash_{\mathcal{A}} \operatorname{con}_{\alpha} \rightarrow \varphi_{\beta}$ and $\vdash_{\Omega} \sim \rho_{\beta} \rightarrow$ $\rightarrow\left(P \mu_{\alpha_{1}}\left(\overline{\sim \rho_{\alpha}}\right) \wedge P r_{\alpha_{2}}\left(\overline{\rho_{\alpha}}\right)\right)$, we obtain $H_{\beta} \operatorname{con}_{\alpha} \rightarrow$
$\rightarrow \operatorname{Con}_{\alpha_{1}} \vee \alpha_{2}$.
One also could construct $\alpha_{1}, \alpha_{2} \in \operatorname{Bin}$ such that $\alpha_{1}=\alpha_{\mathcal{R}} \alpha_{2}$ but $\alpha_{1} \wedge \alpha_{2}<_{\mathcal{A}} \alpha_{1}=_{\mathcal{A}} \alpha_{2}=_{\mathcal{R}} \inf \left(\alpha_{1}, \alpha_{2}\right)$.
2.19. Theorem. In [Bin] every pair $\left[\alpha_{1}\right],\left[\alpha_{2}\right]$ has the infimum.

$$
\begin{aligned}
& \text { Proof. Let } \alpha_{1}, \alpha_{2} \in \operatorname{Bin} \text {. We put } \\
& \alpha_{1}^{\prime}(x)=\alpha_{1}(x) \vee E_{\cdot} m_{k .}^{(k)}(x) \wedge_{y<x}^{\vee} \operatorname{Prf}_{\alpha_{1}}(\overline{0 \approx 1}, y), \\
& \alpha_{2}^{\prime}(x)=\alpha_{2}(x) \vee \operatorname{Em}_{k}^{(\mu)}(x) \wedge \vee_{y<x} P_{r} f_{\alpha_{2}}(\overline{0 \approx 1}, y) .
\end{aligned}
$$

Evidently, $\alpha_{1}^{\prime}, \alpha_{2}^{\prime} \in \operatorname{Bin}$ and $\alpha_{1}^{\prime}=\Omega \alpha_{1}$ and $\alpha_{2}^{\prime}==_{\mathcal{R}}$ $=\alpha_{\mathcal{L}} \alpha_{2}$. Set $\propto(x)=\alpha^{\prime}(x) \wedge \alpha_{2}^{\prime}(x)$. We shall prove that $[\alpha]$ is the infimum of $\left[\alpha_{1}\right]$ and $\left[\alpha_{2}\right]$. Evidently $\alpha \leqslant_{\Omega} \alpha_{1}$ and $\alpha \leqslant_{\mathcal{A}} \alpha_{2}$ and therefore
$\vdash_{A}\left(\operatorname{Con}_{\alpha_{1}} \vee \operatorname{Con}_{\alpha_{2}}\right) \rightarrow \operatorname{Cop}_{\alpha}$. Conversely ,
$\vdash_{\mathcal{A}}\left(\sim \operatorname{Con} \alpha_{\alpha_{1}} \wedge \sim \operatorname{Con}_{\alpha_{2}}\right) \rightarrow \sim \operatorname{Con} \alpha_{\alpha}$, because

Let $\beta \in \operatorname{Bin}, \beta \leqslant_{\Omega} \alpha_{1}, \beta \leqslant_{\Omega} \alpha_{2}$ and suppose $\alpha \leq_{\mathcal{A}} \dot{\beta}$. Then $\vdash_{\Omega}\left(\operatorname{Con} \beta_{\beta} \longleftrightarrow \operatorname{Con}_{\alpha}\right)$, i.e. $\alpha=\Omega B$, because $\vdash_{\Omega} \operatorname{Con}_{\beta} \leftrightarrow\left(\operatorname{Con}_{\alpha_{1}} \vee \operatorname{Con}_{\alpha_{2}}\right)$.

By the proof of Theorem 2.19, the following holds.
2.20. Corollary. For each $\alpha_{1}, \alpha_{2}, \propto \in$ Bin,
$[\alpha]$ is the infimum of $\left[\alpha_{1}\right]$ and $\left[\alpha_{2}\right]$ if and only if $\vdash_{\mu} \operatorname{con} \alpha_{\alpha} \longleftrightarrow\left(\operatorname{con} \alpha_{1} \vee \operatorname{con}_{\alpha_{2}}\right)$.
2.21. Theorem. In [Bin] every pair of elements of Bin has the supremum.

Proof. Let $\alpha_{1}, \alpha_{2} \in \operatorname{Bin}$ and let $\alpha^{\prime} \in \operatorname{Bin}$ such that $\alpha^{\prime} \leq_{\mathcal{R}} \alpha_{1}$ and $\alpha^{\prime} \leq_{\mathcal{R}} \propto_{2}$. Put
 We shall prove that $[\propto]$ is the supremum. Evidently, $\alpha \in \operatorname{Bin}, \alpha \geq_{\Omega} \alpha_{1}$ and $\alpha \geq_{\Omega} \alpha_{2}$ and therefore $-_{\Omega} \operatorname{Con} \alpha_{\alpha} \rightarrow\left(\operatorname{con}_{\alpha_{1}} \wedge \operatorname{con}_{\alpha_{2}}\right)$. On the other hand $\vdash_{\Omega}\left(\operatorname{con} \alpha_{\alpha_{1}} \wedge \operatorname{Con} n_{\alpha_{2}}\right) \rightarrow \operatorname{Con}_{\alpha}$, because we have $\vdash_{A}\left(\operatorname{con} n_{\alpha_{1}} \wedge \operatorname{con}_{\alpha_{2}}\right) \rightarrow \hat{x}\left(\alpha(x) \rightarrow \alpha^{\prime}(x)\right)$ and $\vdash_{\mathcal{A}}\left(\operatorname{con} n_{\alpha_{1}} \rightarrow\right.$ $\rightarrow \operatorname{Con}_{\alpha}$, . Let $\beta \in \operatorname{Bin}, \beta \geq_{\Omega} \alpha_{1}, \beta \geq_{\mathcal{A}} \alpha_{2} \quad$ and suppose $\beta \leqslant_{\mathcal{A}} \alpha$. Then $\vdash_{\mathcal{A}}\left(\operatorname{con} \beta_{\beta} \leftrightarrow \operatorname{Con}{ }_{\alpha}\right)$, i.e. $\beta=\beta$, because $\vdash_{\beta} \operatorname{Con}_{\beta} \leftrightarrow\left(\operatorname{Con}_{\alpha_{1}} \wedge \operatorname{Con}_{\alpha_{2}}\right)$.

By the proof of Theorem 2.21, the following holds: 2.22. Corollary. For each $\alpha_{1}, \alpha_{2}, \propto \in \operatorname{Bin}$, $[\alpha]$ is the supremum of $\left[\alpha_{1}\right],\left[\alpha_{2}\right]$ if and only if $\vdash_{A} \operatorname{Con}_{\alpha_{\alpha}} \longleftrightarrow\left(\operatorname{Con} \alpha_{\alpha_{1}} \wedge \operatorname{Con}_{\alpha_{2}}\right)$.
2.23. Denotation. The supremum of $\left[\alpha_{1}\right],\left[\alpha_{2}\right] \in[\operatorname{Bin}]$ will be denoted by $\left[\propto_{1}\right] \cup\left[\alpha_{2}\right]$, the infimum by
$\left[\alpha_{1}\right] \cap\left[\alpha_{2}\right]$. This is a correct denotation, since [Bin] is a partially ordered set and therefore suprema and infima are uniquely determined.

We shall now modify (extend) Definition 2.5. In the remainder of the paper, the symbol [Bin] will be used in the sense of the following definition.
2.24. Definition. $[\operatorname{Bin}]=\left\langle[\operatorname{Bin}], \leqslant_{\mathcal{A}}, \cap, U\right\rangle$, where \cap and U are defined as in 2.23.

By Theorems 2.19, 2.21, 2.6 and 2.8 , we have the following:
2.25. Theorem. [Bin] is a lattice. If \mathcal{A} is reflexive, then the lattice [Bin] has no least element, if \mathcal{A} is ω-consistent, then the lattice [Bin] has no greatest element.
2.26. Definition. For each $\varphi \in S t_{K}$ let $[\varphi]$ be the set of all $\psi \in S t_{K} \quad$ for which $\vdash_{\mathcal{A}} \varphi \longleftrightarrow \psi$. Let $\varphi, \psi \in S t_{K}$. We put $[\varphi] \leq_{\mathcal{A}}[\psi]$ if $\vdash_{\mathcal{A}} \psi \rightarrow \varphi$. We define $[\varphi] \cup[\psi]=[\varphi \wedge \psi],[\varphi] \cap[\psi]=[\varphi \vee \psi]$, $\left[S t_{k}\right]=\left\{[\varphi] ; \varphi \in S t_{k}\right\}$ and $[\underline{\mathcal{R}}]=\left\langle\left[S t_{k}\right], \leq_{\mathcal{R}}, \cap, \cup\right\rangle$.

It is well known that [$\mathcal{A}]$ is a Boolean algebra.
2.27. Theorem. The function which associates with every $[\propto] \in[B i n]$ the class [Con $\left.{ }_{\infty}\right]$ is an isomorphical embedding of the lattice [Bin] into the Boolean algebra [⿻ㅛㄱ].

Proof. By Definitions 2.24 and 2.26 and Corollaries 2.20 and 2.22.
2.28. Corollary. [Bin] is a distributive lattice.
(To ba continued.)
References
[1] S. FEFERMAN: Arithmetization of metamathematics in a general setting, Fundamenta Math.XLIX (1960-1961), 35-91.
[2] H. HERMES: Einführung in die Verbandstheorie, Springer Verlag Berlin-Heidelberg-New York 1967.
[3] S.C. KLEENE: Introduction to metamathematics, Amsterdam 1952.
[4] A. LEVY: A hierarchy of formulas in set theory, Memoirs of the American Mathematical Society 57(1965).
[5] A. MOSTOWSKI: A generalization of the incompleteness theorems, Fundamenta Math.XIIX(1960-1961), 205-323.

[6] M. HAJKOVA: The lattice of bi-numerations of arithmetic.II. To appear in this journal.

Matematicko-fyzikalnf fakulta

Karlova Universita
Sokolovaka 83
Praha Karlia
Ceskoslovensko
(Oblatum 8.10.1970)

