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AN EXAMPLE CONCERNING SET-FUNCTORS 

Jan REITERMAN, Praha 

In her paper [2], V. Trnkova* studied set-functors 

preserving limits of certain diagrams, leaving open the 

problem of the existence of a big set-functor preserving 

finite limits. The aim of this note is to construct a big 

set-functor preserving finite limits and colimits up to 

a given cardinal (see Definition 4). The existence of a 

proper class of measurable cardinals is assumed (see De

finition 2). 

First we shall recall some well-known definitions: 

Definition 1 . Let 9 be an ultrafilter on a set A . 

Let <JC be a cardinal. Then T is said to be oc-com

plete if for every collection i XL ; L C J ? of sets 

of f , ccvccL 0 < <JC implies r V X e T . 

ii ? 

Definition 2* A cardinal oc is said to be measur

able if there exists an oc -complete ultrafilter on oc . 

Convention 1. Throughout this note, the word func

tor denotes a irovariant functor from the category of sets 

into itself. 

Definition 3* A functor F is said to be small if 
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there exists a set A such that for every set X 4* 0 

FCX) - U F (f) tF(A)l . 

A functor F is said to be big if it is not small. 

.Definition 4. Let D : 2) —• S be a diagram ( S 

is the category of sets). Let C X ^ T T ^ ; ct e fl)^J) be its 

limit (or colimit resp.). Let F be a functor. We shall 

say that F preserves limit of 3) if (FCX), i FCWa ) ; 

dL 6 S)°V I ) ie a limit (or colimit reap.) of F • J* . 

We shall aay that F preserved limits (or colimits 

resp.) up to a cardinal- oc if it preserves limit of any 

diagram j>; 2) —* S such that ca*cL 3)^ < oc . ( $""-

is the set of all morphisms of SO • ) 

We shall say that F preserves finite limits if it 

preserves limits up to ,K0 . 

Convention 2. Let F, G be functors. Denote F c 

c <J if 

(1) FCX) c ffCX) , 

(2) x * FCX) -* FCf)(*> - GCfKx) 

holds for every X and every f.- X —• Y . 

Definition 5. Let J be a directed class. Let a func

tor Fu be given for every L e J . Assume 

(31 u * C — > F̂  c F̂ t , 

U) LA Ft CX) ia a set for every aet X . 

Define a functor F by 

FCX) - U Fc CX> for every set X , 

FC-Wx)« .£C*K*> for every x c FCX), f: X - * y , 

- 228 -



ct € J is arbitrary with x € ̂  C X) . 

(The correctness of the definition of FCf) is gua-

ranted by (3).) 

We shall call F the union of F , t € J and 

we shall write 

F * ^ Ft , 
u€ 3 

Lemma 1. Let Ft t t c J, F « U Ft be as in 

Definition 5. If Ft 5 t € 0 preserve finite limits* 

so does F . 

Proof. I. It is well-known Cl] that a functor preser

ving equalisers and products of any two sets preserves all 

finite limits. 

II. F preserves equalisers. Really, if f, 9..; X ~~* 

—> Y are arbitrary, £ - ix ; f (x ) ~ q- (x )} , £; E —* J 

is the inclusion then 

<x e FCX); FC-f)U) « FCQ,)CXH * U <x j F Cf)Cx) « 

- F^C^CxH - ^ F t c p [ p t ( £ ) ] « FC^)FCEJ . 

III. F preserves products of any two sets; Let X. , 

X2 be sets, let TT̂  % X^ x X1 -+ X^ Cl • 4, 2 ) be the 

canonical projections. We have to prove that for every 

X, e FCX,), x„ e F CX„ ) there is exactly one z e 

e F ( I x X„) with P C TT. > U ) - *, , i ** i9 1 . 
i SL x x 7 ' 

The existence of % 1 Choose u e 0 with oc» e 

c F CX. ), i m 19 2 * as F preserves products, the-b x * * ' ** 

re is exactly one z e P C X. x XM ) with 

^ . d T ^ f t l - J i , , * • < , £ . As FL c F , the last 

equalities are equivalent to those which we had to prove. 
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The unicity of z i Assume that P (It, ) (z* ) m *. , 

i m 4, 1 for some %% c F C Xf x Xz ) . Choose t 

with #, £* e F ( L x Jf J . Thus we have 

Pc C T^ ) (x*) m ̂  , Fb C TH ) (x) m *j which implies 

Z m z,* . 

Lemma 2. Let F ; c © CV F •» U F. be as in 

Definition 5. If J is a linear ordered proper class and 

if for any c % 3 there is u' e 3 such that i -c C 

and F̂  *> Ft> , then F is big. 

Proof. Assume that F is small i.e. that there exists 

a set A such that for every set X + 0 

PCX) - U FCf)£F(A)J . 

+ :A-+X 

As the ordering of jf is linear, there is ot 6 J with 

F C A ) « -f^CA) . Consequently, 

PCX) %,&,<P«<*> tP, CA)3 c F^CX) 

for every X 4» # . Choose fi m 0 with T(0)m T^(0) 

and put £ « mi-afe <C «e , /3 } • Thus, we have PCX) c 

c £ < X ) c F CCX) c P C X ) for L > e -, hence Fe • £ 

for every i > £ which is in contradiction with the as

sumptions of the lemma. 

Definition 6. Let Ft ; t, e CtW. be a system of 

functors such that 1 c F^ for c € Cfcct ( I is 

the identical functor.) Define functors <J, # L € QkcL 

by the transfinite induction as follows; 

O 0 * it i* />-<fc »• 

(Evidently, GL , /3 •<- C form an increasing sequence 
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and thus the definition of U GA ia correct.) Let 

us assume that 

(6) for every set. X there is an ordinal oc such that 

TT CG^ CX)> - <?«-, CX ) for every y » «c . 

Then GL , t • C#a£ satisfy the conditions (3)*(4) from 

Definition 5 and we can define a functor Sttfifv 1^ by 

Remark 1. If F, G preserve finite limits, so does 

F o g . 

Lemma l'« Let Ft , i « CfctcC , F* &tyifv FL be as in 

Definition 6. If F , i, • Q/&C6 preserve finite limits, 

so does F -

Lemma 2 \ Let F , L m GccL , F * -Sofifi- F̂  be as in 

Definition 6. If for any t € GhxL there is /S -> L 

with P- * I , then F is big. 

Proofs of the last two lemmas follow from the defini

tion of Stcfifi F^ and from Lemma 1, Lemma 2, Remark 1. 

Now,, we recall the definition of a functor (JA ^ 

where A is a set and 9 a filter on A (aee 1.23): if 

X is a set, then the elements of 6L ,- C X ) are equi-

valence-classes on the set of all f s A —* X with res

pect to the equivalence f ̂  9* s {# j fC^)a?9-Cdc>J^ fr 0 

For every f t A —> X define C f J by f € C f J e Q Of). 

If f 5 X — • y is an arbitrary mapping then fy £, OfKCo,!)* 

« Lf o 9..3 . For every X 9 X c X define S * A —-> X by 

£ Ca> •» * for every cue A and put £6*C*)** C5 3 . Evi

dently, (U. is a mono transformation from I to <Ĵ  # 
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Hence there is a functor Q>A ̂  and an i so transforma

tion C/;fl^ — • QA r such that e* • («-** Cx) m x 

for every set X and x % X . Thus, I c u^ ^ * 

Remark 2. £2J <3L _ preserves finite limits. 
n} T 

Remark 3. (a) If & is a filter on A and X a 

set, then 

CSXKCL Q^ r (X) -6 Cca^d X ) 

(b) If ? is an oc -complete ultrafliter and if X 

is a set with coJvdL X < oo then <Ĵ  ̂  CX> » X . 

Proof of(a) is easy, (b) follows from the well-known 

fact that every function f * A —> X is (under our as

sumptions on X and T ) constant on a set of the filter 

7 . 
Theorem. For every cardinal oo there exists a func

tor preserving finite limits and colimits up to cc , 

Proof. Let { mv^ j L G OkcL } be a class of mea

surable cardinals such that /m. > <K> and rrrt- < /m~» 

whenever fl < ^ * 

For every u e O/ccL choose a /m,^ -complete ultra-

filter 3^ on nmL . Put F^ « 9 ^ r and define (*t 

as in Definition 6. 

Let X be a set with cojcab X < rm~t for some 

t c Cfo<i # As each measurable cardinal is unaccessible, 

we can easily prove by the transfinite induction that 

QXJJUCL <3Q CX)< < m . - t 4 l for /3 .6 c .In particu

lar, COJCCL G. CX) < tm,t ^ which implies (see Remark 

3(b)) that 3^ C^)CX>> m G^ CX > for /3 ^ c . 
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Hence we can def ine F » &U4141, F 

F i s b ig by Lemma 2 ' and i t p r e s e r v e s f i n i t e l i 

mi t s by Remark 2 and Lemma l ' . 

As #£ a r e oc -complete u l t r a f i l t e r s , F def ined 

above p re se rve coproducts up to 00 (see L2J ) . I t may be 

e a s i l y proved t h a t F -» SAA^L F L a l s o does . 

There was proved i n £21 t h a t a functor p r e s e r v i n g co-

products up to <JC , oc > K« , p r e s e r v e s coequal i s e r s and 

thus p r e s e r v e s c o l i m i t s up to oc . 

R e f e r e n c e s 
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