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Commentationes Mathematicae Univeraitatia Carolinae 

12,3 (1971) 

ON HOMOMORPHISM PERFECT GRAPHS 

P. K&IVKA, Praha 

Introduction. The homomorphism graph is defined as 

a graph which arises in a natural way on the set of all 

endomorphisms of a graph. Here we are interested in the 

question, under which conditions a graph is isomorphic 

with its homomorphism graph. 

We shall need the following definitions: 

Let X be a set. Let M be a set of mappings of X 

into itself. The pair ( X , M ) is called a transforma

tion monoid if the identity mapping of X belongs to 

M and the set M is clo3ed under composition. 

Two transformation monoids ( X, M ) and ( Y, -N ) 

are isomorphic if there exists a 1-1 mapping F i X —> Y 

such that the mapping T: M — * N defined by 

T( £) (F(x)) » F(f(#)) is an algebraic isomorphism 

of monoids ( M , W ) . 

A transformation monoid ( X , M ) is called ab

stract if ( X , M ) is isomorphic with (M, L-- ) where 

L M » *L f i f e M } ( Lf ; M — > M is defined by: 

Lf I*)-***). 

We shall use the following well-known lemma (see 

AMS, Primary 05C20, 05C99 Ref.2. 8.83 
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e.g. £4}>. 

Lemma. A transformation monoid ( X, M } is ab-

atract if and only if there exists xQ e X such that 

for every * e X there exists exactly one £ e .M such 

that £ (x0) ss oc ( ,x is called an exact aource). 

A graph ( X , K ) is a set X with relation K c X * 

x X . Concerning graphs we use the notations of £1J. 

Let us remark that the monoid C ( X , K ) of all compa

tible mappings (homomorphisms) of the graph (X, K ) into 

itself is understood here in its actual form as a trans

formation monoid. 

All the graphs concerned here are finite. 

The following definition was suggeeted by Z. Hedrlln. 

Definition. Let ( X , R ) be a graph. Define the ho-

momorphism graph (C(X,K),JA) of the graph C X, K ) as 

follows: 

l , ^ e C ( X , K ) , then (£,<^ )*.M «-* (f(x),<*(*>) € R 

for every x € X . Note that this graph is one of the 

graphs related to tensor products, see £2J. We say that 

the graph ( X , K ) is homomorphism perfect if it is iso

morphic to the graph ( C C X , K ) , . M ) # The property of 

being homomorphism perfect is studied here in its rela

tionship to the abstractness of the transformation monoid 

(X, C C X , K » . 

Theorem 1. Let ( X , R ) be a homomorphism perfect 

graph. Then the transformation monoid (X, C (X , TL)) 

ie abstract. 

Proof. Let F be an isomorphism of (X,K) onto 

(CCX,K).|ii) - the homomorphism graph of ( X, K ) . 
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Consider C ( C ( X , X ) , J d ) . Clearly, 

L^eCCCiX,TL),)A) for every f e C ( X , X ) Uiltfy)e 

6 M implies \ (£i}£±) - Cf « ̂  , f • f̂. ) c Jl as 

£ is compatible). Further, £± >4» £j implies L^# * 

Thus c4^<iCCX,R)*ca^iC(C(X,R),M) m caJutl^ . 

Since L M c C(C(X,R);JA) , L M * CCCCX,K),M.) holds. 

Thus it remains to prove that the transformation monoids 

CX,C(X,X)) and CC(X,X), C(C (X,K),M )) are iso

morphic . 

We shall show tfeat this isomorphism is carried by 

the mapping F , i.e. that the mapping & defined by 

y(f)CFC<x)) as FCf C«x)) is an algebraic isomorphism. 

First, we shall prove that f e C ( X , % ) implies 

^(f) € C ( C ( X , . R . ) , M ) .Let C£.,f.)eJ* .Then 

crcf>(f4>, ycf)(t.))«crcf)FCF-^)), 

rCf)FCF^Cf^)))*CFCf CF^Cf.))), FCf CF"Vf^)))) e M . 

Evidently ?(i • 9.) » yCf) • T(q,) for every £,9-. . 

Further, £ 4B ̂  implies W(£) & &(q,) and consequent

ly y is 1-1. Q.E.D. 

Theorem 1 does not give a sufficient condition for 

homomorphism perfect graphs. We construct a graph (even 

a class of graphs) possessing an abstract transformation 

monoid of homomorphisms into itself which is not a homo

morphism perfect graph. 

Example. Let m, be an even number. Define the graph 

C X ^ X ) *y X„*<1,...,m,} and R . <U,4),C2,2), 
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(S,»),^,(f ,f),(f *^,f+2), ( f * 3 , f + 3 ) , -

..., («v-% irt), Cm., f + 4), <4, f * 4), <2,f+ 2),,,., (f ,-utf. 

Evidently C C X,X> * -Cĉ  ,*.,, c~ , id, f, £ ,...,£'n'* 1 , 

where c^ Ĉ -) * -i, for all ̂- » 4,,,,, /n. • f C£) s tv + 4 for 

i 4: f , m. j f C f ) ~ 1 , f<m,)«f + -1 .Clearly £ ^ « £*. 

Let F be an isomorphism of ( X , X ) onto CCCX, X ) , J O . 

We have Cc^,Ci>€ M
 f ° r a11 * « ̂ ,"-, f > thuS 

F<4,,,,,f 3 -s ic^,..., CQ I .Thus there exists an <£ , 

x £ t ^ »u such that FC£) « -t̂i , therefore 

C a ^ , ^ ) ^ Jft ,i.e. C i - ~ ,£)£ R holds for every ^ -=• 

«'f,»-̂ /rt .This is a contradiction. (Evidently CCX,X) 

is abstract monoid, any {, as %~ + 4,,.., m, can serve as 

an exact source.) 

In the following theorem we give a sufficient condi

tion for a graph to be homomorphism perfect. 

Theorem 2. Let C X , X ) be a graph. If the trans

formation monoid CX.,CCX,X)) is abstract and commu

tative, then the graph C X , X ) is homomorphism perfect. 

Proof. There exists an x0 € X which is not an ex

act source of C X , C C X , X ) ) # Define the mapping 

F: X — * C ( X , X ) by FC*> m £ , where £ C*„> * * 

(such £ is determined uniquely). We shall prove that F 

is an isomorphism of ( X, X ) onto ( C CX , X ) , JA) . Evi

dently F is 1-1 . 

Let (*,,,*,-,) € X and let FCo^)* f̂ , i - * 4 , . 2 . 
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Then 

CFCx^C*), FCx^K-xH-C^C*), £lCx))=Cf1CFC^>Co<0» , 

^CF<*)<jfe>>)«CF<*>C^ 

and as F is a compatible mapping (F(^c)(^), T(x.)(*1))eR 

for all x 6 X . Thus CFU„ ) , FC*„ » 6 M . Let 

C^, f^) e Ji . Putting x » xQ we get (x1 , * 2) € X , 

Q.E.D. 

A trivial consequence follows from the last part of 

our proof: Let ( X , TL ) be a graph, ( C ( X, R ) , M ) its 

homomorphism graph. If the transformation monoid 

(X , C ( X, X )) is abstract, then the graph 

(C(X,]l) ?M) is isomorphic with a spanning subgraph 

of ( X , R ) . 

Now, the functional graphs will be studied. A graph 

( X, R) is called functional if for every x e X the

re exists at most one a^ e X such that (x, /%*) e Ji 

(see e.g. C31). 

Let Jk,,rn> be integers, 4 -= M> -= m . Define the 

graph G ^ m CX^,R) by X„ « *̂ f, ..., <n * , 

R m {(4,l)f(2,3),..., («i-1,(n),(<n.,tt,+ 4)} .Evidently G ^ 

is functional. 

Theorem 3. Let C X , K ) be a functional graph. 

( X , R ) is homomorphism perfect if and only if there 

are integers Jfc and nv (4£ Jk, £m) such that ( X , K ) ^ 
m <%,,*. • 

Proof. We shall prove that <?*,,*, is homomorphism 

perfect. Evidently £>(<%*)=* iid,tit& ,•••- im~ * , 
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where f is defined by f (<£) = i, + 4, </= A , . , . , <n,-4; i(m,) ~ Jk . 

Since ( X^,C (d^ m0)) is abstract ( 1 is an exact sour

ce) and commutative, G^ is a homomorphism perfect 

graph. Let ( X , E ) be a functional graph (X,R) 4s G^ m 

for any Jk,, fn . We shall prove that (X, C(X,R)) is not 

abstract, i.e. (X,R) is not homomorphism perfect. 

Suppose that (X,R) is abstract. Let x 0 be an exact 

source. Let x* ,»»•, X^ be all points of X such 

that there does not exist (x'. ,x.) e R , i =s A,*»*9 <p* . 

Clearly ^ 2r 1 . Evidently, xQ 6 ix^,..., x^ 1 . 

For every i -= 4,..., Jfv there exist Jk,. , m* such 

that GL . _, is a subgraph of ( X ,R). ( GL A «• (i .x , .* ,,... 

where ^ - ^ .) Evidently, VW4+<>i%*.a>''''i*^ * ~
 X 

(wwui 5f m to,) is the same set for all -i -» 4,..., fa . 

(If the opposite holds then there exist two sets A c X t 

B c X such that A n B * j ^ ; A u B - » X such that 

(a,, Sir) 4 R and (Jlr,a,) $ R. for every a, € A , ̂  c 3 . 

Assume that x0 & A . Then (B, & / £ ) must be rigid 

(see I D ) . This is a contradiction.) 

Denote the points of X by x^9 ... , x» . For eve

ry x. dm A,..., fa) there exists t (1 4 t & Ai) 

such that . x^ ^ m 3<\ . We say that x • belongs to 

oT . Suppose that there exist tf^,..., *x.*i,m, ^/m' ~ 

^ 2 , 1 ̂ -ft,*-^-*.... -< "frm, ̂  -f* > »uch that x^,,., 

• * • 9 *.**. belongs to the same "x. . Let Jt̂  as 
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We ahall prove xM + iX̂  # Let us define £„ as follows; 

for all -i, m fa,.*. ,4*^ and fQ m \*L for the rest of X . 

Evidently, £0 is an homomorphism and since -id, («x^) « 

«• %x̂  , f0 (^) m oĉ  ? .x^ is not an exact source. 

Clearly there holds: H- < HK % 3. e {fy, ..., 41^ 1 

implies X • is not an exact source as there is no homo

morphism f such that £ (iX« ) --• x., . The mapping f, 

also shows that no x* ( 3, c < 4,..., *fi. } N 4i*ft ,..,-,-fiĵ J ) 

is an exact source. 

Hence it follows that for every 5T (i *» 4,,.., Jk ) 

there exists at most one ** (£ -» 4,..., ffc ) belonging 

to 3T . Suppose that x • £ c €4,..., 4a- f is an ex

act source (i.e. x± • *x» )• ->t Jte. s a.-fe + ̂ ; whe-

are positive integers «.. < M~, Xi> ** m* - 41.., , 

'!,-•., -ft . Define f9 by: 

*-, Ф "ť ^ 

* ^Xaík.i-m.4> * <*
 X"H 

- ' G * i x ^ i fc^-*^ ° * ̂  » # *'' f , (^ Xi * * i x^«- *.+« 

for all i 4- ̂ . and f *-*» -£ct for the rest of .X . 

Evidently, f * is a homomorphism. Since id (*j) -* #* 

f^x;) se * • , we have £ contradiction. This proof 

holds for all J- .*. 4, ..., >ft , hence (X, K. ) is not 

abstract, Q.E.D. 
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