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12,4 (1971)

REMARKS ON FLOWS IN NETWORK WITH SHORT PATHS

Jir{ ADAMEK, VAclav KOUBEK, Praha

In [1] Ford and Fulkerson solve the problem of the
maximum value of a flow in a network. In the present note
we discuss the case that the length of paths is limited.
We show that the natural generalization of the main result
of Ford and Fulkerson (min-cut max-flows theorem) doe not
hold. We give then some estimations on the values of flows
with short paths and we show some extremal cases.

Definition. A network is S = < X,R,%k,z,57 where

X is a finite set (the set of vertices of S ),Rc XxX
(the set of edges of S ), #:R— N , N is the set of
naturals (the capacity function of S ), and 2z, »€ X ,
2 # /o (the source and the sink of S , respectively).
Subnetwork of S is a network S’ = <X’ R & z,s )
with X’c X, R’c R, R'(r) & o(r) VreR .
Path in § is @=<X,,%,, ..., X, > where x, are

4

vertices of S, {x;,¥ > are edges of S, X, = 2,

i+1
m-1
X, = » . Denote go‘ =X, X, 428, -
m =path in S is a path <X, X , .e., X, ?  with
AMS, Primary 05C20 Ref.%. 8.83

Secondary 05C35
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m £ m.
m =flow (flow) in S is a subnetwork
T=<X,R,%,z,5> of S such that there exists
a collection {c; 3; .y of m -pathe (paths) in § with
ﬂlb1 ()=l{i el .°, ne cfil . (The paths need not
be disjoint.)
Value of an m-flow (flow) T in S is |11l . Denote
£, ¢S) (£(S)) the maximum value of an m -flow (flow)
in § .
m =cut (cut) in § is C € K  such that @en C+
% ¢  for every m -path (path) @ in S .
Value of m -cut (cut) C is "%ch(/v) . Denote
c,m’(S)(c(S)) the minimum value of an m-cut (cut) in
S . Denote d, (S) the maximal value of a flow in S,
D = (i,f,%,z,b) such that
a) for every n € R there exists an m -flow in S
<Xy Ry, By, 2, 0> with Moy (n) = R(n)

)

b) there exists a collection {d i _; of paths in S
which are not m -paths such that for every x € ﬁ

Rv)=14ielsnediil .

Remark. In [1] flow in § is defined as a subnet-
work T = <X R %, %,6> of S such that for every
xe X, x% xX+n

= ¢ (< >) .
<x'€)‘k1jt,‘((x,§>) c(qf‘.”&‘&' n,x
Evidently this definition coincides with ours. The

value of T as defined in (1] is“’;’n ng‘ (Kz,n>) ,which
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is again equal to the value defined above. In (1] cut is
aset Ac X such that z e A & »e X -A ,

the cut A is 3 M (<{x,a?>) . It may be easily ve-
X€A,yeX-A,<x,4 >R

value of

rified that the minimum value of a cut in § in this sen-
se is just ¢ (S) .
Proposition. ("min-cut max-flow theorem”.)
£(S) = ¢ (S)
for every network S .
Remark. The natural generalization of "min-cut max-
flow theorem", namely £, _(S) = ¢, (S) for every m

and every S5 does not hold - e.g.

h=4 £ (S) =1, (9)= 2.

% o
Theorem. ¢, (5) = £,(S8) 2 ¢, (5)-4d, (5)
for every network S and every natural m .

Proof. Let S = < X,R ,%,x,k) be an arbitrary

network, m € N ;
A) e, (8) 2 £,(S8),

Let T be an m-flow in S with the value £ (S).
Then £,(S) = £(T)mc(T) & ¢, (5) .
B) £, (8) 2 ¢c,(8)-d,(S) .

1) 4,(8)=0. Let E cR be the set of all
edges which are edges of no m -path in S§,1let S’ =
= (X,R-E,&/R-E,z,4s).Evidently every path in §°
is an m -path and s0 £, (5) & f(S5*) , Also
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c,(8) &£ ¢ (8’) and so
£.(S)Z£(S")=c(8") & ¢, (8), £,(8) = ¢, (S) .
2) dp(S) > 0. Let D= <KX R 4 2,57
be a flow in S fulfilling the conditions a) b) in the
definition of o, and let the value of D be d, (S).
Denote S ~D = <X,i, ﬁ,z, % 7 , where
K= (R-RpuUsneR ; hn)>k (1)},
R/R-R,= R /R-R,, R0 >k ()= R (1) = kr)-4,1).
Evidently d, (S ~D)= 0 and so £, (5-D) =
= ¢,(5-D), further £, (S) z £, (S~-D) ,
¢p(8-D)+ec(D) & ¢, (§) and so

£(8) 2 £,(5-D)=c, (S-D)+c(D)-c(D) &

2 ¢, (8)-c(D) =c,(5)-£(D)=c,(5)-d,(5).Q.E.D.

Lemma. Let every edge of a network S

be an edge of
an m -path in $ ., Then either every path in S is an m-

path or there exists an (m - 1) -path in S .
Proof. Let there be no {m - 4) -path in § and let

<“o""4' cesy;Xg ? “be a path in § with R >m. Let

K = mawx {4 ; there exists an m -path @ in S with
(g, Xy 2y CXyy X, 0,000, KXy > € p‘ 3.Let & = <x,,%,...
cory Ry 3 A rgreees Ay > be a path in S . According to the
assumptions there exists an m -path © in S  with

CKpy X pg? = tt,letz= Uy Y yeees Wogy Ko K pgs Y g %o
Now if 4 & n then <X,,¥%,..., X, » Borts Viazroe > Y > is
an m -path which is in contradiction with the choice of
I8 G < n, A Y, WG g9 Ky, Wiagreens Y ? 18 AN
(m~-1)-path in S , which is a contradiction, too. Q.E.D.
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Corollary. ¢,(S) 2z £,(S) & ¢, (S)-¢c,_ , (S),
especially c, , (S) = 0 == £,(8) = ¢, (S) for every
network S and every m € N

Proof. The special part is an easy consequence of the
preceding lemma and theorem. Let S= <X ,R, b4, =z, »>
let ¢, ,(S)>0.Let CcR bean(m— 1) -cut in S
with = A (n)=c  (S). Denote §¥*=<X,R-C, be/R-C,z,m).
Evidently ¢, ,(S*) =0 and ¢, (8% +¢, ,(S) & c,(S)

and so
£.(S)z £, (8*) = c, (8% & ¢c,(S)-¢, (S) . Q.E.D.
Remark. £, (S) = ¢, (S) m=41,2,3%

for every network 3

Remark. It follows easily from the corollary that
cM(S) - £@(S) =» “@u..(S) £ (m+1). £,u_h(5) 3
especially ¢, (S) @ (m-2).£, (8) .

Remark. If £  is restricted, ¢

'n, 18 also restric-

ted for a given m , The situation is different if m is
arbitrary: For every m there exists a network Sn such
that £, (8,)=1&¢c,;, ,(8,) =m + 1 :M 4

+
Let §, = <X,,R My X Pm?y Xy = ‘{lrésa-_‘a v

m?»-"m?

v fa} I o Re= 18 00, <tz af, >,

¢ 22 Tyeney M .
<°§,1§ )#1;..;2»»4 3 M=l 2, =l oy = Xy




——

Remark. Let {qvm nzq be a series of non-negative
integers. There exists a network S such that £, (S) =
=¢,(S)-q,VmneN iff g =q,=¢,=0 and there ex-
ists S natural with m > % =>q, = 0 .

Proof. The condition is clearly necessary. Let us
prove the sufficiency. Let a network ﬂw be given
for m >3 with £, (J ) =, (¥,) if e * m
£, (¢ ) = () -, -

?

An example of such a network is e.g.

f'f’la= <xﬂl.) Rﬂtlaeﬂtfz'l b>' xﬂbs {a!'»: i;:: v {1’”}"2

i%:‘lu

vix, s3;
R = 2,07, <2, 477, Caly | ), BT, 203 U iKa], &7,
ey, <al, BT, <z«"' OO AT T DI L @
%, = Omn -

R, R

5 5
al al a; ay a9 <,
x & M A oz H ;: s
R
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Now, the network we are looking for clearly is
o i

(%, S, R, , ¥, 2,5, where /R = %, . Q.E.D.
Remark. We may take into consideration not only the

upper bound of the length of paths but also the lower

bound. We may define an m-m -path as a path

(Xgy Xyyoeog X, > With m & ko & m  and we may

analogously as before define m- m -flow, m-m -cut

and th“n . It is easy to see that a little change

of the proof of the theorem gives

Cmom (S) B £, (S)2c, (S)-d, (S).
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