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THE NONEXISTENCE OF A WEAK SOLUTION OF DIRICHLET’S PROBLEM
FOR THE FUNCTIONAL OF MINIMAL SURFACE ON NONCONVEX DOMAINS

V. SOUCEK, Praha

§ 1. Introduction. In this paper, I will be concerned
with the problem if there sxists the minimum of the func-
tional

O () -[%h 1V 1* dx

on the set of functions w«w e w:"cm , ek, with
the boundary condition ¢ ¢ C(3N). ‘

It is well known that we have the existence theorem
for a classical solution of this problem only if the do-
main ) is convex, for all nonconvex domaina () we are
able to find @ & C(902) such that there exists no
classical solution of this problem ([11). In this paper, it
will be shown that the situation is different for weak so-
lutions:

1) If almost all points of the boundary J9fL are con-
vex points (Def. 2), then there exists a weak solution for
all @ e C(3QL) (see § 3). An interesting situation
is, for example, in the well known classical counterxample

of T. Reado ([4],p.204). There exists a classical parametric
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solution, but this solution has no singlevalued projection
onto (X ,4’-plane. There exista a weak (nonperametric)
solution W € W:"(.O.) which is even from

CP(D)A CCIL N 1S}) (where S is the only noncon-
vex point of £l ). These two solutions are different. I
mean that the Radon’s example is in fact rather a counter-
example of regularity of the solution on the boundary 80Q
than the counterexample of the existence. On the other hand,
the example of Bernstein ([4],p.201) is indeed a counter-
example of the existence of the solution.

2) If the nonconvexity of the boundary AfL is es-
sential (for example, a part of the boundary is a part of
the circle which has a positive one-dimensional Lebesgue
measure), then we can find a boundary condition ¢ &€ C(812)
such that there exists no weak solution of our problem (see
§ 2).

Remark. There is a possibility to extend the functional

d on the larger space of functions, the space W(S)(.O.) o
) Wf’(.ﬂ.) and ask for

“zn;v':r‘;,(m Pu) ; el (302)

thu =g
Then we have an existence theorem for this ultraweak solu-

tion for each domain £ (also nonconvex) with the C-

boundary and for all @ e L,(9£)  ([21,[3]).

§ 2. Nonexistence of the minimum.
Definition 1. Each function « € W,‘"” () for

which
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P) = ® ()

VW”lm
¥~ € W)
holds, will be called a weak solution of our problem.

Theorem 1. Let {L € E, be a bounded domain with
the Lipschitz boundary, let My, My be two weak soliu-
tions and let

sy (X) & u,y(x)

a.e. on 82 (in the sense of traces).

Then

44.1(.x) £ u,_(.x) a.e. in . .

Proof. There exists a measurable set (L, < {L such
that

u, (x) £ w,(x) a&.e.in O~ 0, ,
aby (X) > w, (x) a.e. in N, .
We can define the functions
Uy (X) = min L, (%), sy (X))
a, (x) = mae Lu, (X)), qz(x)l ,

then from the Beppo-Levi definition of the space W:" ()

it follows that «,,6 &, e Wf”(.ﬂ.) .

31 4y
From the inequality w, < “w, a.e. in 9L we
have Ay = ALy M, = 4, 8.6 in oNn .
Then
() £ d)(u,3) ,
i.e.
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n.ﬁ V4+lV.u.4|2d-.x + S+ 1V 12dx =
‘a, o ]
£ S VA+1Va 12 dx + S VA+ 1V, Pdx
a-Q, o 2

and
Plu,) & dlu,) ,
i'.-
ada A+ 1Vuy Pd + [ V4100, Pdx 4

én{a,‘M + (Vu,,_l‘d..x + &J;w + IV.«.‘,I’ dx .

From this we obtain

?

n{dﬂ Va,lfdx & ST+ TV l*dx ,
-]

n{\M-r |V, 2dx = nf‘M + 1V, l2dx

hence
Q(&ba) = Q(M") .
The functional § is strictly convex on {u e H(,“’(n-),
“ -6 an i  hence

,wS(.x) = u,(x) a.e.in 0 .

Leuga. Let & & CP(0) A CC(fL) be the classi-
cal solution of the equation of a minimal surface in 1 c

€ E, . Then « is a weak solution (of our problem) over
LARIE Y

Progof. If a e C® (L) then the assertion of this
lemma holds because the functional ¢ ia continuous and
convex on W:"(.Q.) . There exist the dowains 0., ,

3 =4,2,... such that
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oo
ﬁ"C-Q.; .(l,é_cn4*1;é,y'ni-n.
and a:é" a5 are uniformly bounded.

The function “‘ni- is a classical solution in

.W:”(_ﬂ_é_) , hence the apriori estimate (see [4])
AW«’- 1Vwl*dx 4 meas (-Q-j) +£A4 lwlds £ K

is valid, where X is independent of Z -
By the limit 4 —> oo we abtain

nfﬂ-ﬁ-leI’-du < + co ,

hence w e W;“’( fl) . Because ® is continuous and
convex on W, (1) , we have that « is a weak solu-

tion over W:”C.ﬂ.) . G.E.D.

~ If the function 4, from Theorem 1 is a special au-
xiliary minimal surface, for example,

uy ()= -R.axceooh 2 ixlzR, xsE, ,
we can prove then another maximum principle; we can suppo-
se that the inequality € u, holds only on some
part of OfL . This allows us to construct a counterexam-
ple for some nonconvex domaina ) - to take such a boun-
dary condition @ that there exists no weak solution of
our problem.

Theorem 2. Let 0 ¢ E, be a bounded domain with
the Lipschitz boundary, let. I‘(xo) be a part of the cir-
cle X(x,,R;) =, {x 6 E,,lx~x,l= Ry}, let which
have a positive one-dimensional Lebesgue measure, let all

points fL be outside of the circle K (x,, Ro) and
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0N n K(x,,R,) = P(Ka) ;

let us suppose that there exista d > 0 such that the
open set
Dy =ixe 2, Ix=-x,1 >R}
is the domain with the Lipschitz boundary for all R e
e (R,, R, +d).
Further let
(1) w (x) be a weak aolution aver Wf"(.ﬂ.) ,

(1)  w(x) £ - R, axceovh 15%5-9—'- a.e. on
o
8.0 -T(R,) ,

(iii) there exists ¢, > 0 such that lu (X))l < ¢,
a.e.on I'(R,) .
Then there holds 4 (x) £ 0 a.e. on T'(R,)  hen-

ce

[t = o |
'RO

Proof. let us denote (for R e <R, , R, +d > )
P(RY=4{xefl; x2+g?’=R13,

R,= mup iR; T(R) 0}

w(x) £ = R, anceoshy a.e. in Q. .

and

let)-—wath;—

forall 4= X >0 .
By Lemma the function
1(x) = @, Ux~x, D+ ¢,

is a weak solution ovar W: (L), wehave 4, 4 n
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a.e. on 9L , hence from Theoream 1 it follows that
a (%) £ m(x)

a.e. in £l and we can define the real function

Y(R) = Ay e wp(x) ; R, € R < R,+d ,

where v, (x) ia the trace of |y on
. R
['(R) (T'(R) c 22p) .
It is sufficient to prove that

(1) (x) £ g Cx=x,1) =0

“Ro
holds a.e. in I'(R,) ~ and then to use Theorem 1.
Let us assume, on the contrary, that
¥Y(@®,) >0
then we can denote

1 R
£ = 2 Y(Ko) > 0.
There exists o > 0, d" < d = such that for all R e

e <R,,R,+o>, pe<k R >

(2) @)+ e 2 g ()

holds. :
Part I: Let n, € (R,,R + 0") be fixed; we will

prove that
¥in,) &« ¢ .

1, From Lemma it follows that the function
No(X) = Pr, Clx=% D+, 3 o = ¥(R,) > 0
is a weak solution over W: (), it is clear that
Mo (X = w(x) a.e. on T(R,) ,
No (x) 2 gp (lx-X,1) 2 mw(x) a.e. on 90 ~T(R)),
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hence from Theorem 1 we have

N,(x) 2 u(x) a.ec on 0

and also
(3) Yip) < ¥r, (@) +
for all es <R,, R, .
Because
2 [y ()] = -
IF Pr, (% -1 )%.
we have (see the figure)
Y(RY A=L[R,,¥(R,)]
Dy =[xy
in'..sl
=[n,, z]\qr&(p)i-%
@)+,
Sl
K B\ R

the graph of the function P (P) + 4, on <R,, co)
is beginning in the point A , there exists x, > R,
such that the graph of the function 9'.(9) + 4, in-
tersects the halfline AB  in one point Dy=Lx,, %],

where
(4) gy = 93.“'4) + Yy,
and in (R,, &, ) the graph of the function g (P)+ 44
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lies more below than the halfline H .
a) IL %, = r, , then clearly
Pr, ®)+ 4, < €
and from (3) it follows
¥in,) € €

what we want to prove.

’

b) .If K, < X, , then we will do the second step.

2. The function

N, (x) = P, Ux =%, 1) + o,
is by Lemma a weak solution over W,“' ( .Q.n) , from (3),
(4) we have

‘!’(»,) 59%(;(.1)4-% =gy = 9,‘1(@,) + gy
i.e.
wlx) € m, (x) 4.e. OB 1",,"
and by (2) we have
u(x)‘ga.é(l_x-x&l)é_ga,Jlx-x,!)a- E<g (lx-%1*%
ace. in {X €N ; Ix-x1 22,3 .
-
Hence from Theorem 1 we have
alx) « ”14(‘") e.e. in{x € .O.,'lx—-"o”*q;a

i.e.
(5) ¥(g) é%_q(p)f-ah , ee<x R 2> -

Again, the graph of the function g?,,"Cp) +%
beginning in the point D,  and there exists /4y > nr,
such that the graph of the function @, (@) + W1 ine

",
tersects the halfline. 34 5 in the point
Dz = L"‘z""z] , vhere
q'l. = %‘, (K’ﬁ) *vf ¢
-- 731 -
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For @& (x,,x,) the graphof g (@) + 4, lies
more below than the halfline I, .

a) If x, = X, ,then

Pr, (Ry) +y, < €
and from (5)
¥ln,) < €,

what we need.

b) If n, < K, , we can continue, we can do further

steps, but because

d 1
e rP) =~ o
9 75—

there must exist A > 0 such that for all

Re<Ry, 2,7, epe<R,R+A>

1
l/KEa -1 "‘o"xo

is the direction of the half-

holds. Because -~
r, "Ro

lines B » J-)_'—i y voe it is clear now that the
numbers .
YR~ g 5 Y= %y s %3~y -~
are bounded below by the number A . Hence after a fi-
nite number of the same steps we obtain r 2K, and
¥ix,) £ & .

Part II. Because ¥ (R) £ € for allRe(R,,R,+d),
it follows from Theorem 1 that

#(xX)< € a.e. in
and hence

“(‘x)ée-_!%al a.e. in 2.0 ,
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which is a contradiction with the definition of ¥(R,) .
Example. Let (2 be the domain from Theorem 2, let

us consider @ (x) € C(2) such that :
(1) @ (x) = - R, axccovhr —!"-‘-]—;—'!91- for all
(-4

xedN-T(R,) ,
(i1} max 9(x7>0 .
xe NCRY)

If there exists « e W;’ (£l) such that

dw) =v2"v§?c'm¢(”)’ thi = @ |,
thvrsPp
then by means of Theorem 2 we have

trw (X) £ —Rowwoh,—%‘- 0 a.e. in I'(R))

which is a contradiction with 4 = ¢ a.e. on T'(R,).
So there exists no weak solution i & W': (fL) with
this boundary condition ¢ .

Remark. I think that Theorem 2 can be proved for
more kinds of domains which contain the part of ellipse,
parabola, cycloida and so on in the nonconvex part of the
boundary. For these kinds of curve there exist similar
auxiliary functions which we need to prove Theorem 2 (see
[4),p.202): Hence some counterexamples can be constructed
for this kind of domains, too. I mean that form of non-
convexity of the domain is not important, only the non-
convexity of the domain must be "essential™, i.e. a part
of any curve must be contained in the nonconvex part of

the boundary S .
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§ 3. existence o for wegk sol .
Definition 2. Let 2 c E, be a bounded domain
with the Lipschitz boundary. We say that x € . is a
convex point of boundary, if there exists a neighborhood
WU (x) such that U(x) A is a convex set.
Theorem 3. Let fL c E, be a bounded domain with
the Lipschitz boundary. Let almost all points of S
be convex points of the boundary, let ¢ e C (L) .
Then there exists the point of a minimum of ¢ on
{u ¢W:(.Q.) s =@ on 00 }
and in fact « & C2(Q) .

Proof. Let A be a set of all points of .  which
are not convex points of boundary. In Serrin’s paper ([5])
‘it is proved by the Perron’s method of subfunctions that
there exists . & C2() such that
(1) u is a solution of the equation of minimal surface
in  ,

(1) « eC(A-A),

(iii) w«4 = @ forall x € 9L —A .

So I need to prove only:

1) uw e W‘,"(.Q.) and it ia a weak solution over
wica

2) s =9 ae.on S  in the sense of
traces.
1) Because Il £ C in 90O , we can see from the Per-
ron construction that '

lwl < C in 2 .
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The next part of the proof is the same as the proof

of Lemma.
2) It x e O is a convex point of boundary, there
exists the neighborhood U (x) such that

meClhnll); u=9 on L noAL,
hence

thaw =@ on Un N .
We have then
th w = @ forall x € ) -A .

From w« e vnf(xx) it follows that tru e L, (90)
and
thu =@ in L (82).
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