Commentationes Mathematicae Universitatis Caroline

Svatopluk Fučík; Jindřich Nečas; Jiří Souček; Vladimír Souček
 Upper bound for the number of eigenvalues for nonlinear operators (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 1, 191--195

Persistent URL: http://dml.cz/dmlcz/105407

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 13,1 (1972)

UPPER BOUND FOR THE NUMBER OF EIGENVALUES FOR NONLINEAR OPERATORS
(Preliminary communication)
 Vladimir SOUCEK, Praha

Introduction. Let f and g be two nonlinear functionals defined on a real Hilbert space \mathbb{R}. We consider the eigenvalue problem
(1)

$$
\left\{\begin{array}{l}
\lambda f^{\prime}(\mu)=q^{\prime}(\mu) \\
f(\mu)=\varnothing
\end{array}\right.
$$

($\rho>0$ is a prescribed number, f^{\prime} and g^{\prime} denote Frechet derivatives of f and q respectively).

Under some assumptions on f and g it is known that there exist an infinite number of points $\mu \in \mathbb{R}$ and inPinite $\lambda \in E_{1}$ satisfying (1)(see [2], [3],[4]). Such a theorem was first obtained by L.A. Ljusternik and L. Schniralman in 1935 - 1939.

In this preliminary note we give abstract theorems with

AMS, Primary: 58D05, 49G99, 47H15
Secondary: 35105, 45499

Ref. Z. 7.962.5
7.978.5
reasonable assumptions on the functionals f and g about the result concerning upper bound for the number of λ 's. and μ 'solving the eigenvalue problem (1) and the application to the differential and integral equations.

Abstract theorems. Let R be real Hilbert space.
Theoreml. Let f and g be two real analytic fune tionals on R in the sense of [1], $a>0, b>0$. Suppose
(2) $f(t \mu)=t^{a} f(\mu)$ for $t>0$ and $\mu \in R$, (3) $q(t u)=t^{b} q(u)$ for $t>0$ and $u \in R$, (4) there exists $c_{1}>0$ such that $f(\mu) \geq c_{1} \cdot\|\mu\|^{a}$ for each u $\in \mathbb{R}$,
(5) there exists $c_{2}>0$ such that $d^{2} f(\mu, h, h) \geq$ $\geq c_{2}\|h\|^{2} \cdot\|u\|^{a-2}$ for each $\mu, h \in R$,
(6) g^{\prime} is a completely continuous mapping from R to R.

Then the eigenvalue problem (1) has a solution only for finite or countable infinite λ 's and only one posaible cummalation point of these λ 's is zero.

Theorem_2 (special case). Let f be a scalar product in Ω (generally the theorem is true if $\{\mu \in R$; $f(\mu)=\rho\}$ is a "real-analytie manifold") and g be a real analytic functional on R satiafying the relation (5) and suppose that

$$
q(\mu) \neq 0 \Rightarrow g^{\prime}(\mu) \neq \theta .
$$

Denote by u the set of u 's for which the eigenvalue problem (1) has a solution.

Then the set $g(U) \cap<\varepsilon, \infty) \quad$ is a finite set for each $\varepsilon>0$. (The point $\gamma \in g(U)$ is called a critical number for the eigenvalue problem (1).)

Remark. Suppose, moreover, in Theorem 1 that
(8) f and g are even functionals,
(9) f^{\prime} and q^{\prime} are bounded operators,
(10) $\mu \in R \Longrightarrow g(\mu) \geq 0, g(\mu)=0 \Leftrightarrow \mu=\theta$,
(11) f^{\prime} and q^{\prime} are uniformly continuous on each bounded set.

Then there exists a sequence $\left\{\lambda_{n}\right\}_{m=1}^{\infty}, \lambda_{n} \rightarrow 0$, $\lambda_{n}>0$ such that only for $\lambda=\lambda_{n}$ the eigenvalue prom blem (1) has a solution and if $a=b$ for $\lambda \notin\left\{\lambda_{m}\right\}_{m=1}^{\infty} u$ $\cup\{0\}$ the operator $A_{\lambda}=\lambda f^{\prime}-q^{\prime} \quad$ maps R onto R.

Applicatione

Example 1. We conaider the Lichtenstein integral equetion
$\lambda \mu(s)=\sum_{n=1}^{\infty} \int_{0}^{1} \ldots \int_{0}^{1} K_{n}\left(s, t_{1}, \ldots, t_{n}\right) \mu\left(t_{1}\right) \ldots \mu\left(t_{n}\right) d t_{1} \ldots d t_{n}$ for $\mu \in L_{2}\langle 0,1\rangle$ under the same assumptions as in [2]. Then the assumptions of Theorem 2 are fulfilled.

Examole 2. The degenerated Lichtenstein integral equation
$\lambda \mu(s)=\int_{0}^{1} \ldots \int_{0}^{1} K_{n}\left(s, t_{1}, \ldots, t_{n}\right) \mu\left(t_{1}\right) \ldots \mu\left(t_{n}\right) d t_{1} \ldots d t_{n}$ under the same assumptions on the function K_{n} as in Example 1 satisfies the conditions in Theorem l. Analogously for the equation
$\lambda\langle\mu, \mu\rangle^{n} \mu(s)=\int_{0}^{1} \ldots \int_{0}^{1} x_{n}\left(s, t_{1}, \ldots, t_{n}\right) \mu\left(t_{1}\right) \ldots \mu\left(t_{n}\right) d t_{1} \ldots d t_{m}$
where $\langle\mu, \mu\rangle$ is a scalar product in $L_{2}\langle 0,1\rangle$.
Example 3. Let $\Omega \subset E_{n}$ be a bounded domain and we consider the weak solution of the Dirichlet boundary velue problem for the equation

$$
\left\{\begin{aligned}
& \lambda(-1)^{m+1} \Delta^{m} \mu+g(\mu)=0 \\
& D^{\alpha} \mu=0 \text { on boundary, }|\propto| \leq m-1 .
\end{aligned}\right.
$$

If $2 m<m$ we suppose that g is a polynomial func-. tion of the degree $\&<\frac{n+2 m}{n-2 m}$. Then the assumptions of Theorem 1 or Theorem 2 are satisfied. The same problem can be solved on the base of our abstract theorems. In the case $2 m \geq n$, too.

The proofs and a detailed study of examplea will appear later in Ann.Scuola Norm.Sup. Pisa.

> reperences
[1] A. ALEXIEWICZ - W. ORLICZ: Analytic operations in real

Banach spaces, Studia Math. XIV(1953),57-78.
[2] E.S. CITLANADZE: Teoremy suaxestvovanija tocek minimaksa ∇ prostranstvach Banacha, Trudy Mosk. Mat.Ob太̌と. 2(1953),235-274.
[3] S. FUXfK - J. NEČAS: Ljusternik-Schnirelman theorem and nonlinear eigenvalue problens (to appear in Math.Nachr.).
[4] M.A. KRASHOSELSKIJ: Topological methods in the theory of nonlinear integral equations, Pergamon Press,N.Y. 1964.

Matematicko-Pyzikalnf fakulta
Karlova University
Praha 8, Sokolovaká 83
Matematicky ustav C S A V
Praha 1, Z̈itna 25
Ceskoslovensko

(Oblatun 27.9.1971)

