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Comment at iones Hiathematicae Universltatia Carollnae 

13,3 U972) 

it NOTE ON FRfeCHET SPACES "̂  

R. FRlg, Silina 

Recall that a Freshet apace CL, A ) ia a X..J topolo-

gleal space such that for every aubaet A we have 

AA j - ix \x...» Vm, x^ , x^e. A ? , i . e . AA i s the set of 

al l limit points of aequencea of pointa of A j the space 

CL > A ) i s sai* to be sequentially regular i f for every ae-

quence < x^> of points of L an* every point x such that 

x c L - AUCJC^) Irflere i s a continuous function f on 

XL,A,) , 0 & f Cjf) ^ 4 , an* a aubaequence <tn,̂ > of </n-> 

auch that £<x).mO, i tUCx, -^) . ] = 4 (cf.C33). 

Following [53 a T>- topological space CL ,A) ia cal

led X e -regular i f for every countable subset A an* every 

point x aueh that x e L - A A there Is a continuous 

f unct ion f on ( L , A ) , 0 .lf(x)4 1 sueh that £ C * ) -

? - - 0 , £ C A l s » v f . - - t can be readily aeen that every ^t0 - re 

gular Fr^ehet space is sequentially regular. J. Novdk askert 

In [51 whether every sequentially regular Fr^ehet apace is* 

X 0 -regular. 

1) The article is a part of [1}. 

AMS, Primary: 54D55 Ref. 2. 3.961.4 
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The main purpose of the present paper i s t o show that 

the answer i s no. The space A w constructed by F.B. Jones 
2) i n C2J (as a Moore space which i s not completely regular) 

i s a counter-example. We a l s o give a necessary an* s u f f i c i 

ent condi t ion for a Frdehet s e q u e n t i a l l y regular space t o be 

X 0 - regular an* two s u f f i c i e n t condit ions for an .X0 - r e g u 

lar Fr^chet space to be completely regular• 

Example. Let L be the subset of a l l points ( # , %.) of 

the Euclidean plane X x JL such that /y, s» 0 provided 

with the fo l lowing refinement of the product topology: for 

fv > 0 , the s e t s 

V * G c , 0 ) . « i(x9 0 ) } Ui(*9w) I (u,nr) eL , (u,-x)*+ (nr-*,)^ ** i 

are a l so neighbourhoods of the point ( x , 0) (Niemytzky spa

c e ) . 

Denote by X the just describe* topology. Clear ly , 

( L , A ) s a t i s f i e s the f i r s t axiom of c o u n t a b i l i t y an* hence 

i t i s Fr£chet . The subspace ( J ) , X/D) of ( L , a ) where 

D » l ( ^ , 0 ) l x e X ? , i s * i s c r e t e . The spae* ( L , A ) 

i s completely regular an* hence s e q u e n t i a l l y regular . The s e t 

J i s the ujiion of two d i s j o i n t uncountable s e t s , denote 

them by A an* by J , such that i f U i s an open se t con

ta in ing uncountably many points of one of them, then A l l 

contains uncountably many points of the other ( for the proof 

see 12]). 

Let < ( L^ , h^ ) >n~4 be a simple sequence of * i s -

jo int copies of t h e space ( L , A ) . For convenience we may 

2) I t i s Professor J. Nov6k who c a l l e * my a t t e n t i o n to that 
a r t i c l e . 
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imagine these spaces as lying in different planes of the 

three-dimensional Euclidean space parallel to the plane of 

L . For each point set H in L an* to every natural tn 

there corresponds in a natural way the set H^ in L^, 

(the set H i s the projection of every H ,̂ ) • The symbol 

ft denotes always a point of J) , 
oo 

Let 2 ( L« • A*. ) be the topological Sum of the m,*<i n > m, 
above sequence* We modify i t in the following manner: 

1. If m, i s o ^ (<it« ^ , '3 , y , . . » ) an* ^ i s a point 

of 3 , then we identify points £ ^ an* ^m.+4 *o 

(<^n ; %m.+4 ^ 9 ** ^ i s e V 6 n f ^ * *> >̂ 6>"> ) an*4! ft i s 

a point of A , then we identify points £ ^ an* ft^^ to 

<*,*> W ^ ( t h e -»oJ«o*ion of f ^ j j ^ ) i s ft i n t n i s 

case)* Let for H, z» 0 the sets 

be fundamental systems of neighbourhoods of these points, i#e» 
130 

we take a quotient space of 2 ( L - , X* ) -
m,s* t^' ** 

2. We a** one wi*eal" point 41. (distinct from al l ) to 

the morfif ie* 2 C L„ , X ) . 

Let for .-fc ** 4, 2 , 3 , . . . , the sets 

form a fundamental system of neighbourhoods of *f& » 

Denote by ( L ^ , ft.^, ) this modified space (cf, £21, 

where K „ ** ( L ^ , A <*, ) ) . The space CL«, , X^) 

sat i s f i es the f irs t axiom of countability an* hence i t i s 
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Fre*ehet, i t i s "completely regular at every point" except 

jfi but i t i s not completely regular (at .ft ) since ^ e 

€ L~ - h~. A A . hut for each continuous function f on 
00 OO 1 ' 

(Lmf0im) we have f (p,) e i t A. 1 ( c f . t 2 l ) . 

Proposition. The Fr^chet Space ( L^, f X^ ) i s sequen

t i a l l y regular but fa i l s to be &0 -regular. 

£rj£Q£. First prove that CL^ f&co ' i a sequentially 

regular. Since ( Lm , A ^ ) i s "completely regular an* hen

ce sequentially regular at every point" except ft t we have 

to prove that i f < %m > i s a sequence of points of L w 

such that q, € L w - ^ ^JA C * ^ ) , then there is 

a continuous function £ on (L^ , Jl^ ) an* a subsequence 

( */m.. > of < 55- > such that 

f C | > ) - r O , i t x ^ ^ a i , * » 4 , 2 , 3,<~- . 

Since there i s a natural M,0 such that « ^ € L^ - (^ Q&.) 

for a l l m% , we always can an* *o select a subsequence 

< * ^ > of K^ > such that 

a) K z/fffr > is a constant sequence or the project

ion of no xL l i e s in J) c L # In this case the con-

struct ion of f an* the subsequence < %.„*. > of < x L . > 

an* hence of <»w>> is easy an* is omitte*. 

b) I f ( x ' . , 0 ) c 5 c L i s the projection of x'^. , 

i . e . x'm, i s either of the form of (<££•> <&+*)> ^ * **-o » 

or x ^ c A,. , then there i s a s tr ic t ly monotone, say in

creasing, subsequence < x^ > of the sequence < x£ > of 

real numbers x' » I»et <^t. > be a sequence of positive real 

numbers such that 
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Denote by H ( v . ) - (V**f*.i,, 0 ) ) , , i f Z^ e A^ 

and 

otherwise. Now, let f be a function on ( L^ , h^ ) ^ f i 

ne* in the following manner: 

f (x)m \ for as, * a w ^ $ 

£ (#,) *z 0 for each oc on the boundary of the 

neighbourhood U C J U ^ ) of aw^ a*1* linear on the seg

ment from %mi. to x, , 4> *? 4 , 2 , 3 , * — j 

£ C»)» 0 f or i e e L ^ - ^ J J 11 Cas^ > . 

It i s easy to verify that £ has the *esire* properties. 

If the sequence < *,*, > i s decreasing, then the procedure 

is similar. 

Secondly, denote by 

C m i C x f y- ) I Cx,*y,) c L - D 5 x , -̂ rational J • 

The set Ĉ  Is countable an* can be arrange* into a sequen

ce <*** > and . #, c L ^ - A^ yw<f C*,^ ) . As 

kA c ^ i £ < CaW> > « ***« £C^} c j2* C£ C*W>> 
for each continuous function £ on CL^ , %m ) • Therefore 

C L ^ , A^) f a i l s to be >t0 -regular. This completes the 

proof. 

Lett C L , A ) be a? Fre*chet sequentially regular space* 

Recall that the completely regular modification % of X 

i s the finest of a l l completely regular topologies for L 

coarser than A ? the systems of continuous functions on 
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C L , A ) an* on C L , ft ) coincide an* Jtim x^ - x 

i f an* only i f the sequence < x ^ > i s eventually in 

every A -neighbourhood of x ( see£3J)«A point x0 i s 

called a si^e-point of a sequence < x ^ > in ( L , H ) 

i f any subsequence <x,n.^ > of < x^ > *oes not converge 

to x0 an* the sequence < x ^ > i s frequently in every 

% -neighbourhood cf x0 . 

Theorem 1. A Fr^chet sequentially regular space 

C L » A ) i s tf0 -regular i f an* only i f there i s no se 

quence in C L ^ % ) having a si*e-point f where A i s 

the completely regular modification of A . 

Proof, I . If there i s a sequence <xfTV> in C L , ft ) 

having a si*e-point x0 , then 

x0 e L - A U Cx^) , x0 € ft U Cx^) . 

Thus tot each continuous function f on (L , ft ) and 

hencei as mentioned above, on CL, A ) we have 

f Cx0) € UCfCx^) ) . 

But this implies that CL , A ) cannot be ;jt*0 -regular. 

II . If CL, A ) i s not #0 -regular, then there 

i s a sequence < ^ > of points x^ e L an* a point 

x0 6 L such that 

x0 € L - A U Cx^ ) 

an* for each continuous function f on CL , A ) there 

i s a subsequence < ^ > of (*n> such that 

Mm, f (xm.^) — f Cx0 ) 

•y 

Prom the definition of A i t follows that 
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x0 € A U (x^) , 

i . e . x0 i s a si*e-point of the sequence ^ x ^ > in 

C L , % ) . 

Theorem 2 . A regular separable 4tA -regular Fr^chet 

space ( L , ft ) i s completely regular . 

Proof. Denote by S c L a countable set such that 

d fl & 4- 0 for each non-empty open set <J c L . Let 

F c L be a non-empty closed set an* * 0 € L - F * Then 

there is a neighbourhood W (x0 ) such that ftW"Cx0) c 

c U P an* (L - ftWCx0)) (1 £ 4= # . Hence 

( L -HfCx0)) (1 S 4» J? , Now, arrange the countable set 

(L - W ( x 0 ) ) OS , e i ther f i n i t e or i n f i n i t e , into a sequence 

< x^ > . Evidently 

x0 e £ L ~ A l K x * . ) ) c L - P . 

Since CL , A ) i s 4t0 - regular , there i s a continuous func

t ion f on C L , ft ) such that 

*<*0> » 0 , f t U C x ^ ) 3 = * 4 « - f r F 3 . 

Corollary. A f i rs t -countable separable ^t 0 - regular 

topological space i s completely regular . 

Proof. Professor J . Nov 6k prove* in C4] that every 

f i rs t -countable sequential ly regular topological space i s 

regular . The asser t ion follows at once from the foregoing 

Theorem 2 . 
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