Commentationes Mathematicae Universitatis Caroline

Roman Frič
 A note on Fréchet spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 3, 411--418

Persistent URL: http://dml.cz/dmlcz/105429

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
13,3 \text { (1972) }
$$

A NOTE ON FRECHET SPACES 1)

R. FRIČ, Žilina

Recall that a Frechet space (L, λ) is a T_{1} topological space such that for every subset A we have $\lambda A=\left\{x \mid x=\lim x_{n}, x_{m} \in A\right\}$, i.e. λA is the set of all limit points of sequences of points of A; the space (I, λ) is sain to be sequentially regular if for every sequence $\left\langle x_{m}\right\rangle$ of points of L and every point x such that $x \in L-\lambda U\left(x_{m}\right)$ there is a continuous function f on $(L, \lambda), 0 \leqslant f(5) \leqslant 1$, and a subsequence $\left\langle m_{i}\right\rangle$ of $\langle m\rangle$ such that $f(x)=0, f\left[U\left(x_{n_{i}}\right)\right]=1 \quad$ (cf.[3]).

Following [5] a T_{1} topological space (L, λ) is callea. x_{0}-regular if for every countable subset A ans every point x auch that $x \in L-\lambda A$ there is a continuous function f on $(L, \lambda), 0 \leqslant f(x) \leqslant 1$ such that $f(x)=$ $=0, \pm[A]=1$. It can be reanily seen that every \mathcal{X}_{0}-regular Fréchet space is sequentially regular. J. Novák askeत in [5] whether every sequentially regular Frechet space is: x_{0}-regular.

1) The article is a part of [1].

AMS, Primary: 54D55
Ref. Ž. 3.961 .4

The main purpose of the present paper is to show that the answer is no. The space Λ_{∞} constructed by F.B. Jones in [2] 2) (as a Moore space which is not completely regular) is a counter-example. We also give a necessary and sufficient conation for a Fréchet eequentially regular space to be \mathcal{K}_{0}-regular an two sufficient conaitions for an x_{0} regular Fréchet space to be completely regular.

Example. Let L be the subset of all points (\dot{x}, y) of the Euclisean plane $R \times R$ such that $y \geq 0$ provined with the following refinement of the pronuct topology: for $n>0$, the sets $V^{\mu}(x, 0)=\{(x, 0)\} \cup\left\{(u, v) \mid(u, v) \in L,(u-x)^{2}+(v-k)^{2}<x^{2}\right\}$ are also neighbourhoors of the point $(x, 0)$ (Niemytzky space).

Denote by λ the just describer topology. Clearly, (L, λ) satisfies the first axiom of countability and hence it is Fréchet. The subspace ($D, \lambda / D$) of (L, λ) where $D=\{(x, 0) \mid x \in R\}, \quad$ is riscrete. The space (L, λ) is completely regular ant hence sequentially regular. The set D is the union of two aisjoint uncountable sets, aenote them by A an* by B, such that if U is an open set containing uncountably many points of one of them, then $\lambda \boldsymbol{u}$ contains uncountably many points of the other (for the proof see [2]).

Let $\left.\left\langle\left(L_{n}, \lambda_{n}\right)\right\rangle\right\rangle_{n=1}^{\infty}$ be a simple sequence of nisjoint copies of the space (L, λ). For convenience we may
2) It is Professor J. Novak who calle» my attention to that article.
imagine these spaces as lying in iffferent planes of the three-ifimensional Eucli*ean space parallel to the plane of L. For each point set H in'L and to every natural m there corresponis in a natural way the set $H_{i n}$ in L_{m} (the set H is the projection of every H_{n}). The symbol q nenotes always a point of D.

Let $\sum_{n=1}^{\infty}\left(L_{n}, \lambda_{n}\right)$ be the topological sum of the above sequence. We monify it in the following manner:

1. If m is onत $(m=1,3,5, \ldots)$ anत q is a point of B, then we inentify points q_{a} and q_{n+1} to $\left(q_{n} ; q_{n+1}\right)$; if m is even $(m=2,4,6, \ldots)$ and q is a point of A, then we inentify points q_{m} and q_{m+1} to $\left(q_{n} ; q_{n+1}\right)$ (the projection of $\left(q_{n} ; q_{n+1}\right)$ is $q_{\text {}}$ in this case). Let for $\kappa>0$ the sets

$$
\begin{aligned}
& W^{n}\left(\left(q_{n} ; q_{n+1}\right)\right)= \\
= & \left\{\left(q_{n} ; q_{n+1}\right)\right\} \cup\left\{V_{n}^{n}(q)-(q)\right\} \cup\left\{V_{n+1}^{n}(q)-\left(q_{n+1}\right)\right\}
\end{aligned}
$$

be funiamental systems of neighbourhooss of these points, i.e. we take a quotient space of $\sum_{n=1}^{\infty}\left(L_{n}, \lambda_{n}\right)$.
2. We aतत one "iतeal" point \neq (nistinct from all) to the monifien $\sum_{n=1}^{\infty}\left(L_{n}, \lambda\right)$.

Let for $\mathrm{Be}=1,2,3, \ldots$; the sets
$O_{k}(\Re)=\left(\nmid \cup\left\{_{n>1} \bigcup_{y>0}\left(x_{n}, y_{m}\right)\right\} \cup\left\{\bigcup_{n>k}\left(q_{m} ; q_{m+1}\right)\right\}\right.$
form a funamental system of neighbourhoons of 1 .
Denote by $\left(L_{\infty}, \lambda_{\infty}\right)$ this modifien space (cf,[2], where $\lambda_{\infty}=\left(L_{\infty}, \lambda_{\infty}\right) \quad$). The space $\left(L_{\infty}, \lambda_{\infty}\right)$ satiafies the first axiom of countability and hence it is

Fréchet, it is "completely regular at every point" except \uparrow but it is not completely regular (at \uparrow) since $\neq \in$ $\epsilon I_{\infty}-\lambda_{\infty} A_{1}$, but for each continuous function f on $\left(L_{\infty}, \lambda_{\infty}\right)$ we have $f(\not) \in \overline{f\left[A_{1}\right]}$ (of.[2]).

Proposition. The Fréchet space $\left(L_{\infty}, \lambda_{\infty}\right)$ is sequentially regular but fails to be x_{0}-regular.

Proof. First prove that $\left(L_{\infty}, \lambda_{\infty}\right)$ is sequentially regular. Since $\left(L_{\infty}, \lambda_{\infty}\right)$ is "completely regular and hence sequentially regular at every point" except \nless, we have to prove that if $\left\langle x_{m}\right\rangle$ is a sequence of points of L_{∞} such that $\left\{\in L_{\infty}-\lambda_{\infty} \bigcup_{m=1}^{\infty}\left(x_{m}\right)\right.$, then there is a continuous function f on ($I_{\infty}, \lambda_{\infty}$) and a subsequence $\left\langle x_{m_{i}}\right\rangle$ of $\left\langle x_{m}\right\rangle$ such that
$f(1)=0, f\left(x_{m_{i}}\right)=1, \quad i=1,2,3, \ldots$.
Since there is a natural k_{0} such that $x_{m} \in L_{\infty}-Q_{n_{0}}(p)$ for all m, we always can and to select a subsequence $\left\langle x_{m_{i}}^{\prime}\right\rangle$ of $\left\langle z_{m}\right\rangle$ such that
a) $\left\langle x_{m_{i}}^{\prime}\right\rangle$ is a oonstant sequence or the projection of no $x_{m_{i}}^{\prime}$ lies in $D \subset L$. In this case the construction of f and the subsequence $\left\langle x_{m_{i}}\right\rangle$ of $\left\langle x_{m_{i}}^{\prime}\right\rangle$ and hence of $\left\langle x_{m}\right\rangle$ is easy and is omitter.
b) If $\left(x_{i}^{\prime}, 0\right) \in D \subset 工$ is the projection of $x_{m_{i}}^{\prime}$, i.e. x_{m}^{\prime} is either of the form of $\left(q_{m}^{(i)} ; q_{m+1}^{(i)}\right), n \leqq k_{0}$, or $x_{m_{i}}^{\prime} \in \Lambda_{1}$, then there is a strictly monotone, say increasing, subsequence $\left\langle x_{i}\right\rangle$ of the sequence $\left\langle x_{i}^{\prime}\right\rangle$ of real numbers x_{i}^{\prime}. Let $\left\langle r_{i}\right\rangle$ be a sequence of positive real numbers such that
$x_{i-1}+n_{i-1}<x_{i}-n_{i}<x_{i}+n_{i}<x_{i+1}-n_{i+1}, i=1,2,3, \ldots$. Denote by $u\left(x_{m_{i}}\right)=\left(V^{n_{i}}\left(x_{i}, 0\right)\right)_{1}$ if $x_{m_{i}} \in A_{1}$ and

$$
u\left(z_{m_{i}}\right)=W^{n_{i}}\left(\left(q_{n}^{(i)} ; q_{n+1}^{(i)}\right)\right)
$$

otherwise. Now, let f be a function on ($L_{\infty}, \lambda_{\infty}$) refiner in the following manner:

$$
\begin{aligned}
& f(x)=1 \text { for } x=x_{m_{i}} ; \\
& f(x)=0 \text { for each } x \text { on the boundary of the }
\end{aligned}
$$

neighbourhoar $U\left(x_{m_{i}}\right)$ of $z_{m_{i}}$ and linear on the segment from $x_{m_{i}}$ to $x, i=1,2,3, \ldots$;

$$
f(x)=0 \text { for } x \in L_{\infty}-\lambda \bigcup_{i=1}^{\infty} u\left(x_{m_{i}}\right) .
$$

It is easy to verify that f has the aesires propertiea. If the sequence $\left\langle\alpha_{i}\right\rangle$ is iecreasing, then the procenure is similar.

Seconily, tenote by

$$
C=\{(x, y) \mid(x, y) \in L-D ; x, y \quad \text { rational }\} .
$$

The set C_{1} is countable ans can be arranged into a sequence $\left\langle x_{m}\right\rangle$ and. $\uparrow \in L_{\infty}-\lambda_{\infty} \bigcup_{m=1}^{\infty}\left(x_{m}\right)$. As
$A_{1} \in \lambda_{\infty} \bigcup_{m=1}^{\infty}\left(x_{m}\right)$, have $f(n) \in \bigcup_{m=1}^{\infty}\left(f\left(x_{m}\right)\right)$ for each continuous function f on $\left(L_{\infty}, \lambda_{\infty}\right)$. Therefore ($L_{\infty}, \lambda_{\infty}$) fails to be x_{0}-regular. This completes the proof.

Let (L, λ) be a Fréchet sequentially regular apace. Recall that the completely regular moaification $\tilde{\lambda}$ of $\boldsymbol{\lambda}$ is the finest of all completely regular topologies for L coarser than $\boldsymbol{\lambda}$, the systems of continuous functions on
(L, λ) ans on (L, \tilde{x}) coincite and $\lim x_{m}=x$ if and only if the sequence $\left\langle x_{n}\right\rangle$ is eventually in every $\tilde{\lambda}$-neighbourhoor of x (see [3]). A point x_{0} is called a sire-point of a sequence $\left\langle x_{m}\right\rangle$ in ($L, \tilde{\pi}$) if any subsequence $\left\langle x_{n_{i}}\right\rangle$ of $\left\langle x_{m}\right\rangle$ noes not converge to x_{0} ans the sequence $\left\langle x_{m}\right\rangle$ is frequently in every π-neighbourhoor of x_{0}.

Theorem. A Fréchet sequentially regular space
(L, λ) is x_{0}-regular if and only if there is no sequence in ($L, \tilde{\lambda}$) having a sine-point, where $\tilde{\lambda}$ is the completely regular morification of λ.

Proof. I. If there is a sequence $\left\langle x_{m}\right\rangle$ in (I, \tilde{x}) having a sire-point x_{0}, then

$$
x_{0} \in I-\lambda U\left(x_{n}\right), x_{0} \in \tilde{\lambda} U\left(x_{n}\right) .
$$

Thus for each continuous function f on (L, \mathfrak{X}) and hence, as mentione above, on (L, λ) we have

$$
f\left(x_{0}\right) \in \overline{U\left(f\left(x_{n}\right)\right)}
$$

But this implies that (L, λ) cannot be x_{0}-regular.
II. If (L, λ) is not x_{0}-regular, then there is a sequence $\left\langle x_{m}\right\rangle$ of points $x_{n} \in L$ and a point $x_{0} \in L$ such that

$$
x_{0} \in L-\lambda U\left(x_{n}\right)
$$

and for each continuous function f on (L, λ) there is a subsequence $\left\langle m_{i}\right\rangle$ of $\langle m\rangle$ such that

$$
\lim f\left(x_{m_{i}}\right)=f\left(x_{0}\right)
$$

From the refinition of $\tilde{\lambda}$ it follows that

$$
x_{0} \in \tilde{\lambda} u\left(x_{n}\right),
$$

i.e. x_{0} is a sire-point of the sequence $\left\langle x_{m}\right\rangle$ in ($L, \tilde{\lambda}$).

Theorem 2. A regular separable $*_{n}$-regular Fréchet space (L, λ) is completely regular.

Proof. Denote by $S \subset L$ a countable set such that $G \cap S \neq \varnothing$ for each non-empty open set $G \subset L$. Let $F \subset L$ be a non-empty closed set and $x_{0} \in L-F$. Then there is a neighbourhoor $W\left(x_{0}\right)$ such that $\lambda W\left(x_{0}\right) \subset$ $c L-F$ and $\left(L-\lambda W\left(x_{0}\right)\right) \cap S \neq \varnothing$. Hence ($\left.L-W\left(x_{0}\right)\right) \cap S \neq \varnothing$. Now, arrange the countable set ($\left.L-W\left(x_{0}\right)\right) \cap S$, either finite or infinite, into a sequence $\left\langle x_{n}\right\rangle$.Eviनently

$$
x_{0} \in\left(I-\lambda U\left(x_{m}\right)\right) \subset I-F .
$$

Since (L, λ) is k_{0}-regular, there is a continuous function f on (L, λ) such that

$$
f\left(x_{0}\right)=0, f\left[U\left(x_{n}\right)\right]=1=f[F] .
$$

Corollary. A first-countable separable k_{0}-regular topological space is completely regular.

Proof. Professor J. Novak prover in [4] that every first-countable sequentially regular topological space is regular. The assertion follows at once from the foregoing Theorem 2.

References
[1] R. FRIC: Sequential structures an their application to probability theory. Thesis, MU XAV, Praha,1972.
[2] F.B. JONES: Moore spaces and uniform spaces. Proc.Amer. Math.Soc. 9 (1958) ,483-486.
[3] V. KOUTNfK: On sequentially regular convergence spaces. Czechoslovak Math.J.17(1967),232-247.
[4] J. NOVÁK: On convergence spaces anत their sequential envelopes. Czechoslovak Math.J.15(1965),74-100.
[5] J. NOVAK: On some problems concerning the convergence spaces and groups. General Topology and its Relations to Monern Analysis an* Algebra(Proc.Kanpur Topological Conf., 1968).Aca^emia, Prague,1971, 219-229.

Mó XSAV \vee Praze
Prahe 1, Žitná 25
VS゙D ∇ Žiline
Žilina, Marxe-Engelsa 25

Ceskoslovensko
(Oblatum 20.4:1972)

