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ON THE ITERATIVE CONSTRUCTION OF A SOLUTION.OF NONLINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

Walter PETRY, Diisseldorf

Introduction. General existence theorems for nonlinear
elliptic boundary value problems for operators of the form
!
Aw): = = =1)'p*A_(x a, Dty D00 )
@l em LN

are considered in several papers (see e.g. [1-5, 8, 9, 11~
131). The operator A(w) is studied on a closed subspace
V  of the Sobolev space Wm,ﬂ (L) , where £l is a boun-
ded open subset of R™ m = 1 , The existence theorems
are based upon different methods and different assumptions.
In [1, 2, 5] the theory of monotone operators on reflexive
Banach spaces is used, while in [3, 4, 8, 9, 12, 13] the mo-
notonicity condition is replaced by a weaker assumption.
Browder considers in [3, 4] noncoercive elliptic boundary
value problems, while all other cited papers assume that the
operator A satisfies a coercivity condition. Furthermore
there are different growth conditions on the functions

Ay (X,4,Da,...,D™w ) with respect to 4,..., D™ .

All these existence theorems are not constructive.

AMS, Primary 35J60, 49D10 Ref. Z. 7.956, 7.962.5
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For operators A of order 2m = m an iteration
process is given by Koselev [6] and in [7] Kratochvil
studies a similar iteration method for operators A being
a potential operator. In both cases it is proved that the
iteration sequence converges to the unique solution of
the elliptic boundary value problem. It is assumed that
the operator A is monotone and coercive and the func-
tions Aw satisfy restrictive growth conditions.

It is the purpose of the present note to apply the
general iteration process studied in [10]1 to nonlinear el-
liptic boundary value problems on the space ffm,a . It
is assumed that A is a potential operator which must not
be monotone or coercive. The functions A, (x,4,..., D" )
satisfy less restrictive growth conditions. It is shown
that the iteration sequence converges to a solution of the
not necessarily uniquely solvable nonlinear elliptic boun~

dary value problem,

2. In this section we will state the assumptions, so-
me known results on nonlinear elliptic operators and the
general iteration process studied in [101].

In the following we shall use the usual notations
(see e.g. [3]). We introduce the notations: Let §, 7 and
@ be the vectors {§ :lwlemi,6 {g :laclem-4%
and 4 5?“ slawl=m 3 respectively, from the spaces

) e

S -5, .
, X ™ 1 ana R*m Fm-7 respectively.

Furthermore we assume that () is a bounded open

?

subset of K™ with sufficiently smooth boundary &0
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such that the Imbedding Theorems of Sobolev hold.
For functions « (x), o (x), defined on L a.e., we set

(w, ) = :Lu.(.x) rix)dx , where [n. denotes the

Lebesgue integral.
We will study solutions of nonlinear elliptic bounda-
()

ry value problems on the Sobolev space Wm’ 2 - By
{ar,w >  we shall denote the value of w € T?,,’,';,,_ at

(-
A‘,eW,,,,,2 .

For each o, A, is assumed to be a function from ) x

s,
»R™ to R! satisfying the following conditions (s.[3)):

Asgumption A: (1) A, is measurable in x for fixed
§e R5™  and continuous in § on Ks'"" for almost all
x € £ ., Let & be the greatest integer less than m —
-m/2 ,and f‘; denote the vector {(f l:lx|/< #§ from

Ki"" . There exist continuous functions ¢, and c, from

K:"’ to L™ () and Kl , respectively, such that
+ + Fa s
VAg(x, §)1 20 (§p 0% 0 (50 2 1 um B!

with the exponents 1, and f s satisfying
4:,¢=2. for lxl=m |
Pu = S, fOT lxlelm-m/2,m [ ,
A/8g=1/2 ~(m -lx|)/m ,
/8.0 + 1/8; = 1
po=A4 for lxlel0,461 ,

and
Ty

Pap

€1 for lcl=1IB]=m ,
< Sﬂ/s; for lcl IBlelm-m/2,m],
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lal+ IRl < 2m ,
,p,‘pé sy for lcl e [0, ] ,

Iplelmem /2, m1 .
Som~1
(2) For almost all x € £ and each 7 « K
let = (A (x,7,0)~A(x,7,9")) (g - 92)> 0

feci = m

for @4 ¢ .
(3) There exist continuous functione ¢, and ¢ from
Sgy 4 ~
R to R* with co(gb)Zcozt-O for all §,:={§_ *

slecl € 83  such that for almost all x € {) , all @ and
7 we have

L ]
2 + A
2 A‘ (‘x’Q, ?)9¢%c0(§b)!91 —ccgb‘ )m_”/z;‘5|al‘“_4‘fzﬂ‘

wlem %

with tﬂ < sp :

$m. 4 Som.
(4) F:f0 xR —> R . For each fixed §€R ,

F(+,§) 1ie measurable on () . For almost all x € {) ,
F(x,+) is once continuously differentiable with -g—;-'— =
oC

= A, . Furthermore let
L
1P, § N £y (G )04y () = gl

3
where c, and cg, are eontinuous functions from R _:r to

L*(2) ana R} ,

respectively.
(5) For each o« and almost all x € O , A_(x, )
is once continuously differentiable such that

oA __(x,€) + + Tup o
‘-'TSE'EDil‘ g‘pfgb)(x)«r dadg)

> ]
m-m/24 gy |em ET ?

- 482 -



where the exponents satisfy with g.,: = s, /s, 1/9

+
%3

+ 'llq:q3 = 4 the following inequalities
Tapy = S¢ /(s q;,.,‘ ) for lucl IBlLlylelm-m/2 1,
Pepy = 9py IF Igllrlelm-m/2,ml, lal<m.n/2,

Pepyr = 9ay for lcl, lyplelm-m /2, m1 |
Ipl<m-m/2 ,
Papy = Sy for lylelm-m/2,m1,lxl,Iplel0, &]

and Co P (d , respectively) is & continuous function from
s‘r sI ’
R w0 L¥*¥™P(0)  forlxl,iflelm-m/2,m],

to L% () for l«lelm-m/2,m1 IBlel0, %],

to L°° () for lcl€[0,8], IBlelm-m/2,m] and
to LA(Q) for l«l,Iplel 0,21 (R

+ 7 respec-

tively).

Assumption A (1) - (4) is the assumption of Browder [3]
(£ = 2 ), where the following Lemma is proved:

Lemma 1: Let Assumption A hold. Set

eC
& (u,vr): =la|§m(A°‘(" §w)),Dv) ,

glw): = an(x,g(u,)(ac))d.x

Then it follows:
o
(a) There exists a bounded continuous mapping T: Wm»z—’

L4 -
--»WM:Q_ , such that for all &, v € W,m_,,_
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alu,v) = <Tw, »> .

Furthermore T satisfies the condition (S*): If for any
]
e:quence fdu,3 in wrm,a. converging weakly to &« in
Wm, 2 such that %nuqu('l‘u,,—'ru,uv-u>é 0,
©

it follows that {u,v} converges strongly to « in W,m,2 .

o
(b) g is a once differentisble functional in W, , ,
and its derivative 9.' satisfies

9{(44«’ =T(“) o

(c) For each R = (0 there exists a constant LR> 0

such that for all w, » € th{,u.S hwall s R3

ITw - Tol & Lo ba-ol .

Procf: The assertions (a) and (b) are proved in [3] using
assum;;tion A (1) - (4), while assertion (c) follows also as

in [3) by assumption A (5) using the Imbedding Theorem of Sobo-
lev.

o

The usual norm in Wm, 2 is equivalent to the norm

Val,, j=C = (D%, D"un™ (see e.g.171), which shall
=
be used in the following.

We need further

J
Assumption B: There exist w € Wy ,, v >0, ¢ >0,
such that for all

°

weK,,,y§=fweWm'a:mé ﬂu«-'v",ﬂélt.+§>?
it followa
o
B AL, g W), D) >0

Remark: Under the assumptions A and B the mapping T de-

fined by Lemma 1 is not coercive.
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If we assume the coercivity condition
Assumption B’: Let exist a constant a, > 0 .anda
function a, € L'ca) such that for almost all

s
x e N andellge.}lmL we have

= A (x,$)E. 2a4lqlg—a2(x) 5

Ixlem

then we have the following

Proposition: Suppose that the assumptions A and B .
hold. Then assumption B is also true with oy =0, @ >0
arbitrary and # sufficiently large.

For our iteration process we need the following Lemma

(see e.g. £5], § 8):

Lenma 2: Consider the differential operator
Bu):=(-1)™ = D¥y
fil=m

and the bilinear form

S (D%, D) .

Ylu,wr);: =
jxXi=m

Then it follows:

(a) There exists a linear bounded operator S: W,m 2
L4

o

o
»Wm::a such that for all «, » € Wy, ,

- S, > = rlu,r) ,

CSu,uwd=NSulk el  =lal,, .

o
(b) For each wy, e Wn:,z there exists a unique
o
wy e Wy,  such that Sau, = w .

We will now state a special case of the general itera-

tion process studied in [101].
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Let B be a real Banach space with dual B* , and denote

by {awr, ) the value of' wr ¢ B* at we P. Let

7, €D and set

X

,‘_:s{u.eB,- lw-vll<ni,

K,‘_,?: ={wueB; velu-mlesrrp’

Kesgt =fueb; \u-v, <+t

By Kn, and ]—C,H' we denote the closure of X, and

X, v respectively.

We assume

Condition I: (a) Let £: reg = B* satisfying

AUAY l£Ca)l = M

“ s Rm—g
with suitable constant M > 0 . Let there exist & con-

stant I, > 0 such that for all u,ar € X it fol-
(4 ’ LA X ]

lows
NE(w)-£fCw)l € Lyllw=-nar Il .

(b) Suppose that ¢ is a linear mapping from B to

B* possessing an inverse on B* such that for all aw €
e Bb*
he="Cur)ll & L flarl

with suitable constant I, > 0 . Set
*, . P 1
At o unf(—-—LM ’—_LL,) .
Condition II: (a) There exists a functional g on
X +p possessing a linear G&teaux-differential

d'gdu.,nr):-(g,’(u.),:v) such that qf(«.)= -£f(u) .
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(b) There exists a constant c, >0 such that for
each o « B*
2
Cw, g~ TCawr)> 2 e, larll™

~ . . * Co
Further let 0< % < b : = 4inf (h ’ L,L‘)

Condition III: Let % e [0,1,ve X, and sup-

pose that « € f’“@ satisfies .

Plw) = ¢ () + W £(u) ,
then it follows wu & f,"? .

Condition IV: Let <« % c X,  such that £ (w,) -

—> 0 . Then there exists a subsequence {u,,,, # and an

element & € Km such that Ay, converges strongly to

« 8and £(w) =20 .

We may now formulate

Lemma 3 (sc~ [10]): Suppose that the conditions I - IV
hold and let «, € X, . Then we have:

(a) The nonlinear problem
Fluy, J= glu,)+ nfla,, )

has in the ball {u« € B: ﬂu,—u’, = p? a unique solution

Wy which can be obtained by the following iteration

process
Py ) =@u)ehilu, ) (£=0,1,2,...; » fixed),

41—’,’0 = lbv .
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It follows «, € K, .

(b) The sequence {fu,3 - uniquely defined by (a) -
possesses a subsequence {w,, , ¥ which converges to some
wu*e X, satisfying £ (w*) = (0 . The sequences
{aty, 03 (A= %t4,%+2,..) then also converge to w* .
Each limiting point of {u,} is a solution of £(w) =
= 0 .

(¢) If £(w) =0  has in j(—,., only isolated solu-

tions, then the whole sequence (,a.”? converges to w*

3. In this section we will now state our theorem on
the iterative construction of a solution of nonlinear el-

liptic boundary value problems.

We apply Lemma 3 to the nonlinear elliptic boundary

value problem. Thus we set
©

B:=Wn,,, B*: = ‘,,:’2 s FCu)t = - T(u), @lu):=Sw)
and consider the following iteration process
(1) Sluy, )= Suy,)- nT(uy, )
and
(2) 8§ (“'p,i+1)= S(u.”)— hT(u,,;,) (4'.=0,4,2,...3:3 fixed),
My o = My
to construct a solution of
(3) Tuw =0 .

By Lemma 1 it follows that (3) is equivalent to

(4) alu,r»): = wgmm‘c- , §w)), D%») = 0
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L)
for all v € Wy, o , i.e. (3) is equivalent to a weak
solution of the nonlinear elliptic boundary value problem

(3]
S (=4) DA (x,a(x), e, (D™ (x)) = 0 for

KKi= m
xefl,

(D*u)x)=0 for x€cdf, lxlem-1 .

We can now formulate

Theorem: Suppose that assumptions A and B hold. Let
©
mo € Ky :=dweW, :lu-a,l, <n3 . Then there

~ -~
existsa constant £ > 0 such that for 0< 2 < %o the
following holds:
(a) The nonlinear problem (1) has in the ball

o
{fu e W',m’a_ : Iu,—u,,, ll,m,2 =¥ a unique solution

“,,, satisfying w, € X, , which can be obtained by
the iteration process (2).

(b) The sequence {Mf,,; - uniquely defined by (a) -
possesses a subsequence '(u.-’,, ¢ which converges to a solu~-
tion w* of (3) (i.e. (4)) satisfying «* e K, . The se-
quences {al ., o3 (h =1%4,+2 ..) then also con~
verge to w;k . BEach limiting point is a solution of (3) (i.e.
4)),

(e¢) I£ (3) has in 5(-,,, only isolated solutions, them
the whole sequence {u4,} converges to w*

Proof: We apply Lemma 3. The conditions I(a) and II(a)
follow by Lemma 1, while conditions I(b) and II(b) follow by

Lemma 2. Let % > 0, v € K, and suppose that
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— (-]
ueK,“P:s{u,eWm,z: fw -y by, = L+t

satisfies
SCu) = S(wr) - LT(w)

then because 3 is linear we obtain by Lemma 2 and assump-

tion B
u —%II;’Qs {(Su-w),u-vy=<8w-u,),u-17,>
- <T), -,

<lao-agly, , lu-wl, ,<nlu-wl,, ,

proving « € X, , i.e. u ¢ BEm,P . Condition IV fol-
lows by L.mma 1l(a). Let {ufv?r c j(_,b such that T («,)—>
~> 0 then by the reflexivity of 1Van,a there exists a
subsequence {AL”, § converging weakly to some « . Thus we

have

%_3,,);«41, (Tla,, ) =Ty, -ud==-<T),u-ud>=10.

Hence by Lemma 1(a) {u,, § converges strongly to « , i.e.
w e X, . By the continuity of T it follows T () =0
proving Condition IV.

Remark: (a) The iteration process (1),(2) is rather com-
plicated because it consists of a recursive sequence of ite-
ration processes, but the assumptions are very mild. Further-
more one has only to solve a linear elliptic differential
equations with constant coefficients of order 2m .

(b) The application of a slightly more general form of
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Lemma 3 to nonlinear ordinary differential equations with
boundary conditions is given in [10] without the assumption

that the differential operator is a potential operator.
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